Impact of droughts and heatwaves on surface ozone over Southwestern Europe

A. Guion*, S. Turquety, A. Cholakian, J. Polcher, A. Ehret & J. Lathière

EGU 2022, VIENNA, 23 MAY

AS3.5 COMPOSITION-CLIMATE INTERACTIONS INCLUDING NATURAL AEROSOLS

Tropospheric ozone (O_3)

- Harmful for human and ecosystem health
- Secondary species (CO, CH₄, NMVOCs and NO_x as precursors)
- Key role of meteorological conditions
 - \rightarrow O₃ photo-chemistry
 - → Biogenic emissions
 - \rightarrow O₃ dry deposition

Lack of interactions between biosphere and atmosphere in Chemistry Transport Models (CTMs)

O₃-injured tulip tree foliage

© nps.gov

Biosphere - Troposphere interactions during extremes

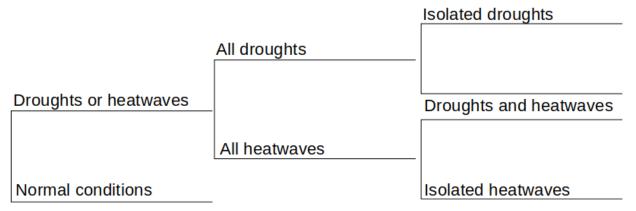
Intense and frequent droughts / heatwaves over SW Europe:

- B-T interactions strongly affected during such events
- Difficulties to represent drought effects in CTMs (biomass decrease and soil dryness)
 - → limited knowledge and many uncertainties

Objectives:

- A) Assess the sensitivity of C_5H_8 emissions and O_3 dry deposition to drought effects
- B) Quantify the variation of surface O_3 during droughts, isolated or combined with heatwaves

Methods


A) Sensitivity analysis based on WRF-MEGAN-CHIMERE simulations

*Variation of observed LAI

*Implementation of soil dryness indicators

in emission and deposition schemes

B) Cluster analysis of surface O₃ based on the indicator "Percentile Limit Anomalies"

Material

A) CTM simulations
(CHIMERE, MEGAN, WRF model)

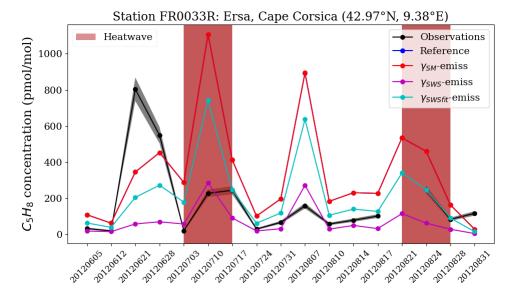
→ summers 2012-2014

Observations of LAI (MODIS from Terra/Aqua)

→ summers 2012-2014

B) Drought (soil moisture) and heatwave (2m t°) PLA indicator (ORCHIDEE, WRF model)

→ summers 2000-2016

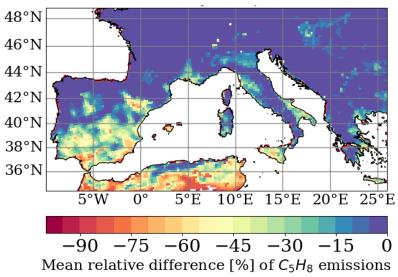

Observations of surface O₃
(AQ e-Reporting from EEA)

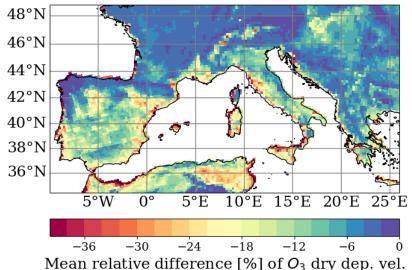
→ summers 2000-2016

Results – Sensitivity analysis (A)

Several config. tested for soil dryness:

- soil moisture and wilting point from WRF-Noah (γ_{SM}) , Guenther et al. (2012)
- soil water stress function from WRF-ORCHIDEE (γ_{SWSfit}) , fitted function of Bonn et al. (2019)

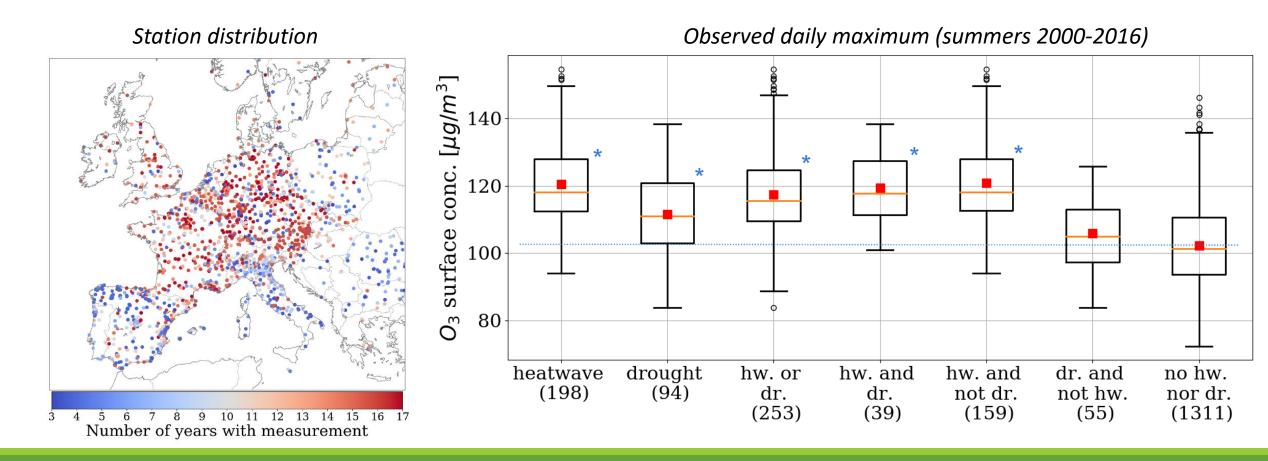



f_{SWSfit} experiment

Emissions over e.g. Central Italy

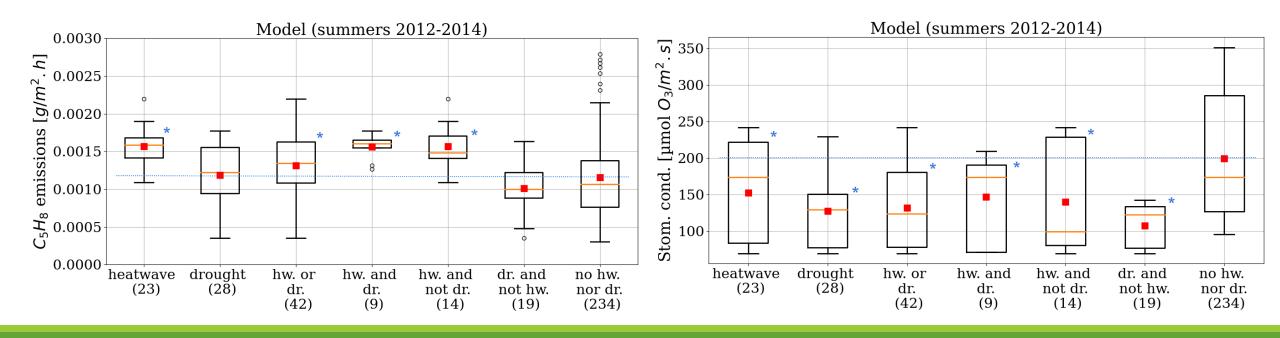
-11% by biomass decr.

-25% by soil dryness

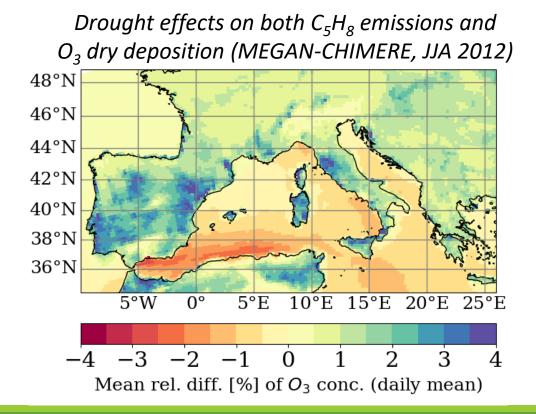

Deposition over e.g. Central Italy

-3% by biomass decr.

-14% by soil dryness

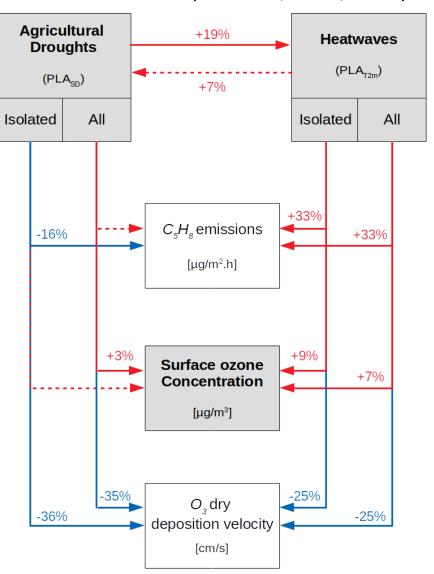

Results – Cluster analysis (B)

- +18μg/m³ during hw. and +9μg/m³ during dr., compared to normal conditions
- Non-significant difference during isolated droughts ('dr. and not hw.')


Results – Cluster analysis (B)

- Including all drought and heatwave effects, simulated interactions (MEGAN-CHIMERE) present signals consistent with O_3 observations
- Negative variation of C_5H_8 emiss. only for isolated dr. \rightarrow confirmed by HCHO observation (OMI)
- Negative variation of O₃ deposition velocity for all clusters

Conclusions and discussion


- A) Biomass decrease and soil dryness:
 - → critical factors for dynamical BVOC emissions and O₃ dry deposition
 - \rightarrow minor effect on surface O_3 concentration

Conclusions and discussion

- B) Drought and heatwave events:
- → overall enhancement of surface O₃ (obs. and sim.) due to increase of O₃ precursor emissions decrease of O₃ dry deposition favored photo-chemistry activity
- → frequent exceedance of threshold values for AQ (not shown here)
- → dynamical representation of interactions |b| vegetation, hydrology, meteorology and atmosph. chem. emphasized
- ! Considerable uncertaities related to precursor emissions (BVOCs and NO_X) meteorological conditions (temp. and PBLH)

MEGAN-CHIMERE (JJA 2012, 2013, 2014)

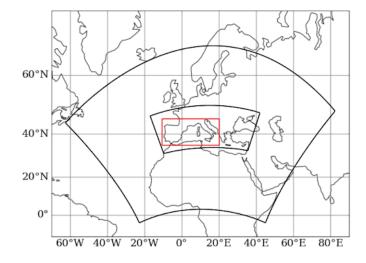
Thanks for your attention

Contact: antoine.guion@ineris.fr

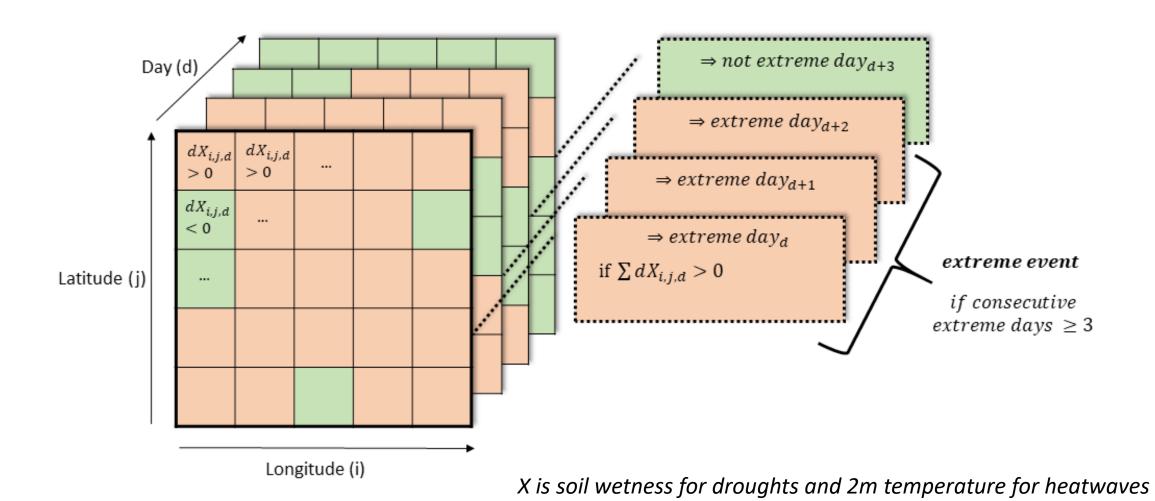
Further details on this work:

→ **Guion, A.**, Turquety, S., Cholakian, A., Polcher, J., Ehret, A. and Lathière, J. Interactions between the terrestrial biosphere and atmosphere during droughts and heatwaves: impact on surface ozone over Southwestern Europe. **Atmospheric Chemistry and Physics (In review**, 2022).

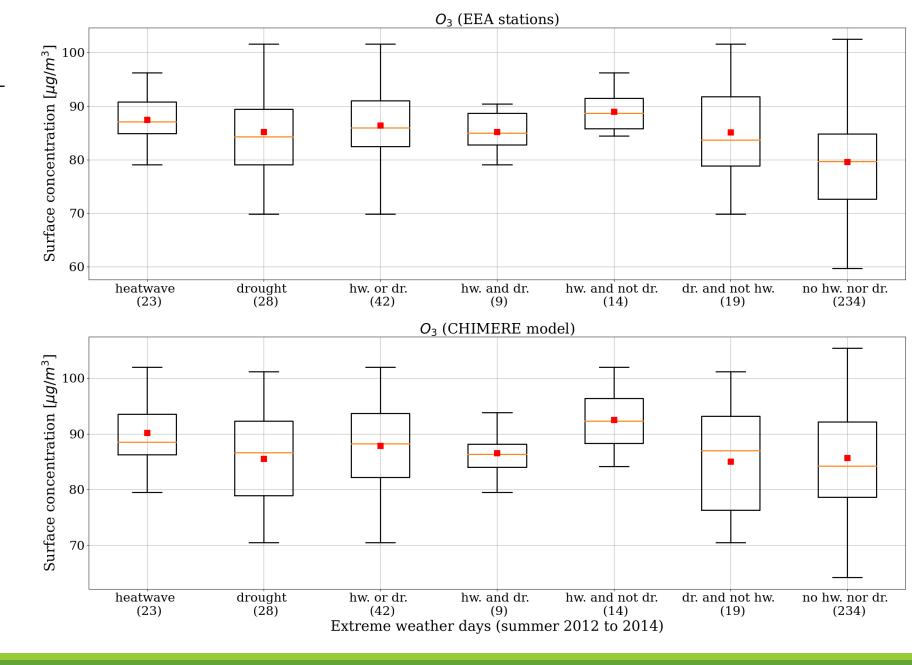
→ Guion, A. Droughts and heatwaves in the Western Mediterranean, impact on ozone pollution. Sorbonne Université, PhD thesis (2022). https://lnkd.in/ezUPT_U8.


Appendices

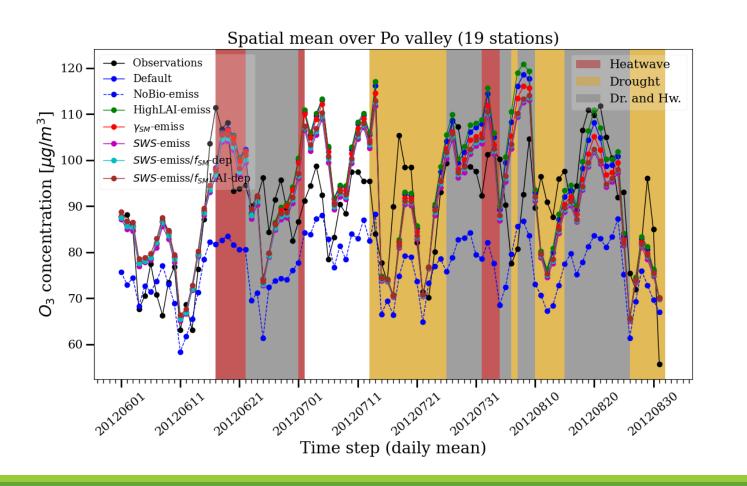
MEGAN- CHIMERE simulations

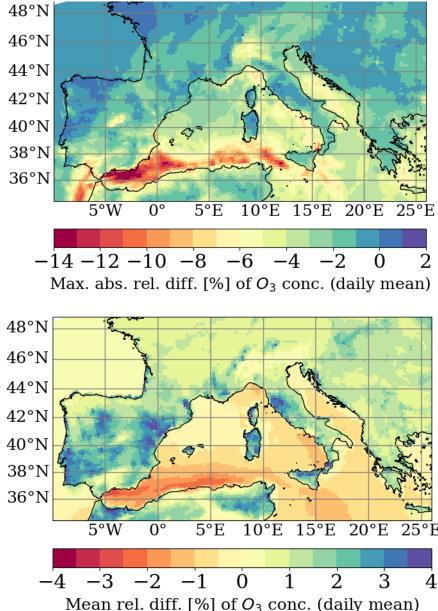

CHIMERE experiments on the nested Med-CORDEX domain for summers 2012, 2013 and 2014

Simulation name	Description	Aim
Reference (R.)	CHIMERE reference (v2020r1)	Default for dry and hot periods
	$On\ biogen$	$ic\ emissions$
NoBio-emiss	R. without biogenic emissions	Contribution of biogenic emissions to O_3
HighLAI-emiss	R. with wet summer LAI	Effect of biomass decrease
γ_{SM} -emiss	R. with γ_{SM} factor from Noah	Effect of soil dryness
γ_{SWS} -emiss	R. with γ_{SWS} factor from ORCHIDEE	Effect of soil dryness
γ_{SWSfit} -emiss	R. with γ_{SWSfit} factor from ORCHIDEE	Effect of soil dryness
	$On \ gas \ dr$	$y\ deposition$
LAIdecr-dep	R. with prescribed LAI reduction	Effect of biomass decrease
$\mathrm{LAIdecr}/f_{SWS}\text{-}\mathrm{dep}$	R. with prescribed LAI reduction and	Effect of biomass decrease and soil dryness
	f_{SWS} factor from ORCHIDEE	


Large and nested domain (20km resolution) in black. Study area in red.

PLA method




O_3 signals (daily mean)

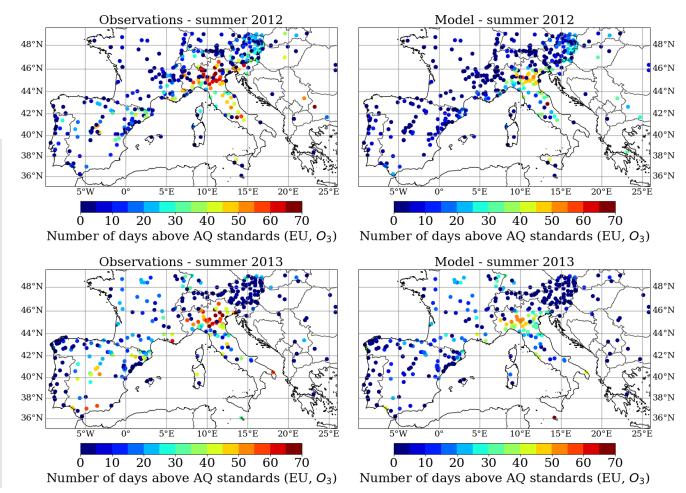
O_3 sensitivity

Drought effects on both C_5H_8 emissions and O_3 dry deposition (MEGAN-CHIMERE, JJA 2012)

Validation

CHIMERE simulation (JJA 2012): validation of O_3 and NO_2 against AQ e-Reporting and T_{2m} against E-OBS

O ₃	Obs. (μg/m³)	Mod. (μg/m³)	Bias (μg/m³), Obs - Mod	RMSE (μg/m³)	Pearson correl. (R)
Daily mean	83.93	84.06	-0.13	14.31	0.53
Daily max	116.32	105.39	10.94	21.49	0.54


NO ₂	Obs. (μg/m³)	Mod. (μg/m³)	Bias (μg/m³), Obs - Mod	RMSE (μg/m³)	Pearson correl. (R)
Daily mean	7.55	2.60	4.95	5.24	0.40
Daily max	14.65	6.08	8.57	9.87	0.37

T _{2m}	Obs. (°C)	Mod. (°C)	Bias (°C), Obs - Mod	RMSE (°C)	Pearson correl. (R)
Daily mean	22.25	22.25	-0.01	8.19	0.76
Daily max	29.13	28.34	0.56	12.63	0.75

Threshold exceedance

EU standard for AQ : daily maximum (8 hour mean) surface concentration < 120 μ g/m³

EEA stations with ≥ 1 exceeding day during summers 2000-2016 (JJA) Average fraction of concerned stations Average number of days per station 27 days
arrana araka a
Average number of days per station 27 days
A.c. e.
Extreme events Percentage of Exceeding values exceeding days
Hw. or dr. 48% +22μg/m³
Hw. 34% +24μg/m³
Dr. 27% +18μg/m³
Isol. dr. 14% +15μg/m³

