

Dealing with climate data uncertainty for agricultural impact assessments in West Africa (Paper in Review)

Paula Aschenbrenner, Stephanie Gleixner, and Christoph Gornott Potsdam Institute for Climate Impact Research

Motivation

- Crop production has already declined in West Africa due to climate change.
- Impacts of climate change on agriculture will become stronger in the near future.
- Uncertainties in climate impacts and suitability of adaptation strategies on a global and local scale are still high.

nature > scientific reports > articles > article

Article Open Access Published: 06 September 2019

Evidence of crop production losses in West Africa due to historical global warming in two crop models

Benjamin Sultan , Dimitri Defrance & Toshichika lizumi

nature > nature food > articles > article

Article Published: 01 November 2021

Climate impacts on global agriculture emerge earlier in new generation of climate and crop models

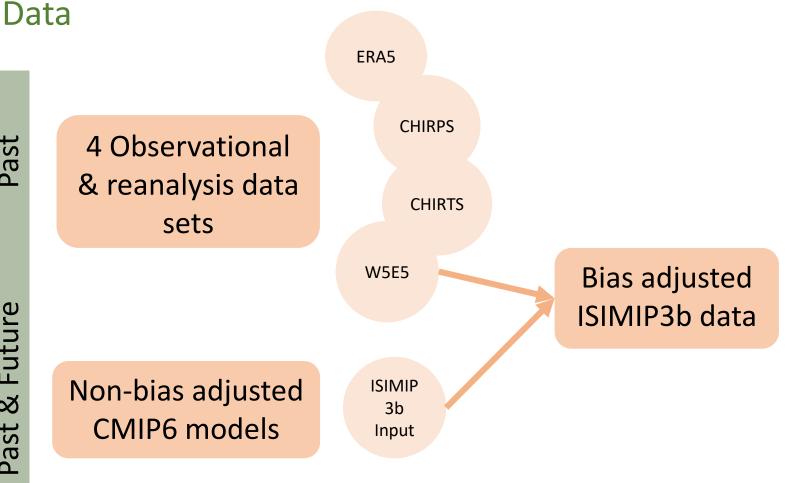
Jonas Jägermeyr [™], Christoph Müller, [...] Cynthia Rosenzweig

Nature Food (2021) Cite this article

Agricultural and Forest Meteorology Volume 170, 15 March 2013, Pages 183-194

Variation in the global-scale impacts of climate change on crop productivity due to climate model uncertainty and adaptation

Tom Osborne a, b △ ☒, Gillian Rose b, c, Tim Wheeler b, c

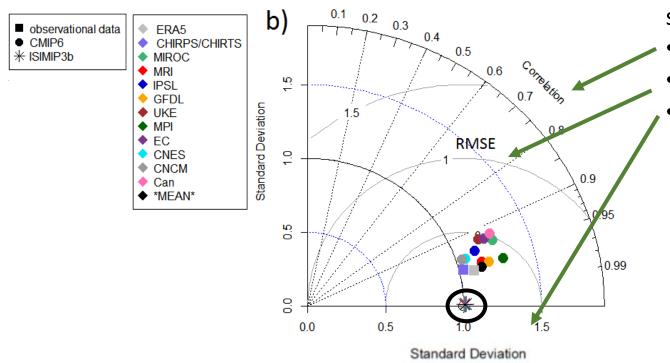


Aim

Providing a better understanding of the quality and limitations of climate data sets which are used in agricultural impact assessments in West Africa.

Method

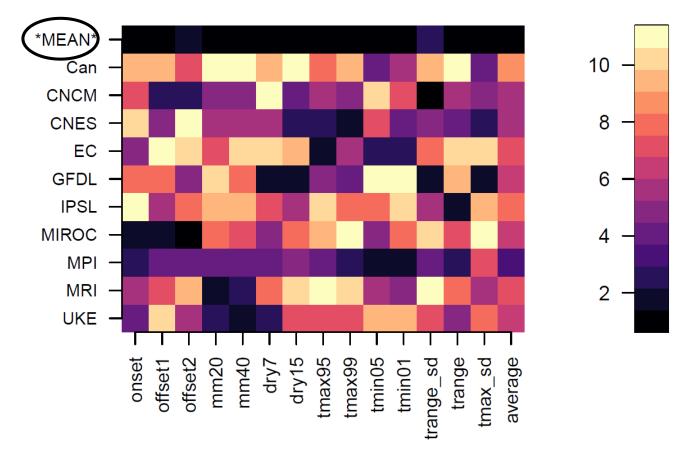
Compare observational, CMIP6 and ISIMIP3b data in:


- Mean climatology
- **Agroclimatic Indices** (rainy season onset, dry spells, heat extremes,...)

ISIMIP: Inter-Sectoral Impact Model Intercomparison Project

Comparing GCMs and observational data regarding mean climatology

Taylor diagram: spatial and temporal agreement of monthly precipitation compared to W5E5 data

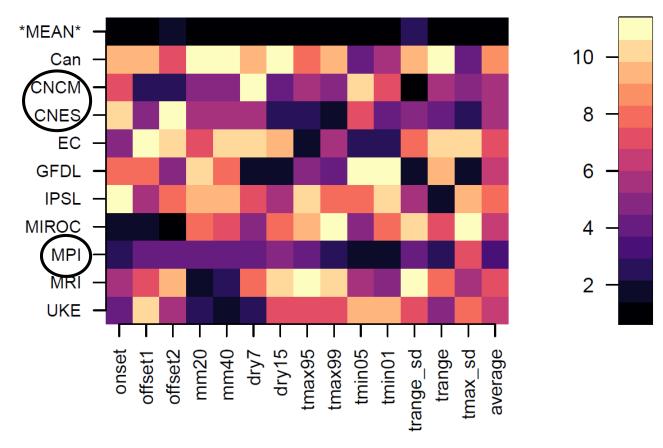

Comparison according to three statistics:

- Correlation coefficient
- Root-mean-square error
- Standard deviation
 - High observational uncertainty
 - CMIP6 models show similar systemic biases over West Africa than CMIP5 models
 - Bias-adjusted mean climatology aligns well to reference data set

Summary of all agroclimatic indices

Ranking of correlation coefficient for 14 agroclimatic indices in comparison to W5E5

Bias-adjusted ISIMIP3b data shows some regionally dependent variances in agroclimatic extremes from the observational data set.


No single model outperforms the other models in all aspects.

The multi-model ensemble mean is consistently closer to the reference data set for the agroclimatic indices.

Summary of all agroclimatic indices

Ranking of correlation coefficient for 14 agroclimatic indices in comparison to W5E5

→ Subensemble of three best performing models could not improve the agreement of the multi-model mean.

Conclusions for using ISIMIP3b data over West Africa in agricultural modelling

- Using multi-model mean of whole ensemble
- Detailed regional specific results can help to understand crop model behavior
- Considering results from all individual models helps to understand the range of uncertainties associated with climate models
- Further efforts needed in:
 - Decreasing observational uncertainties
 - Improving representation of West African Monsoon in climate models

