

Session HS1.2.1 EGU22-940 May 26, 2022

A simple low-cost Arduino based LoRaWAN automatic weather station

Tom Müller¹, Bettina Schaefli^{1,2}, and Stuart N. Lane¹

- 1. Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland
- 2. Institute of Geography, University of Bern, Bern, Switzerland

• **Spatially** variable processes -> Piezometer head, temperature, rain, etc.

<u>Picture:</u>

Low-cost standalone logger

- Data saved on SD card
- Last 2 months without solar panel

Data:

- Air temperature/humidity/pressure
- Groundwater head

<u>Cost</u> : ~100 €

- Spatially variable processes -> Piezometer head, temperature, rain, etc.
- Risky environment

- Spatially variable processes -> Piezometer head, temperature, rain, etc.
- Risky environment

- Low power consumption
- Professional solutions not always more precise
- Large number of sensors with high precision
- Custom made solution flexible for any situation

Picture:

Water pressure sensor for narrow piezometers

<u>Cost</u>: ~50 €

<u>Size</u>: 2.5 x 3 cm

<u>Precision</u>: 1 mm H_2O

Low-cost datalogger hardware requirements

- The basic functions of an Arduino boards (Microcontroller, digital, analog and I2C pins);
- A low-power consumption;
- A real-time clock (RTC) clock to record time and to allow an RTC external interrupts to wake
 up the board from deep sleep;
- A built-in connector for a 3.7V LiPo battery;
- A built-in connector for a 5V solar panel with a charge controller;
- A built-in **LoRa module** or a socket to add a LoRa module with antenna;
- A **SD Card holder** to save data locally.

SODAQ Mbili : ~40 €

CubeCell dev. board (for LoRa): ~15 €

Receives /reads data from Gateway

Server (local or remote)

Database to save and visualize data

<u>Automatic weather station</u> (end-device Arduino based with LoRaWan antenna

<u>Picture</u>:

LoRaWAN end-device on the Otemma glacier in the Swiss Alps

<u>Data</u>: rain, air temperature, humidity

<u>Cost</u>: ~150€

For any context:

- Completely off-grid (no internet, solar powered)
- 4G connexion
- In urban areas : use other open source gateway !

<u>Picture</u>:

Portable LoRaWAN gateway with local server for remote locations

<u>Cost</u>: ~600€

Thank you for your attention

Don't hesitate to contact me : tom.muller.1@unil.ch

https://github.com/tomuelle
/DIYweatherstation

