

Assessing the Environmental Vulnerability and its Impacts on Livelihood in Dudhkoshi Basin in Eastern Nepal

Deepak Kc¹², Michel Jaboyedoff³, Marc-Henri Derron⁴, Sanjaya Devkota⁵
¹United Nations Development Programme, Nepal (deepak.kc@gmail.com)
•²,³,⁴Institute of Earth Sciences, Faculty of Geosciences and the Environment, University of Lausanne
⁵FEED (P) Limited, Lalitpur, Nepal

27 May 2022, Vienna, Austria (Virtual Participation)

Study Area: Dudhkoshi Sub Basin, Nepal

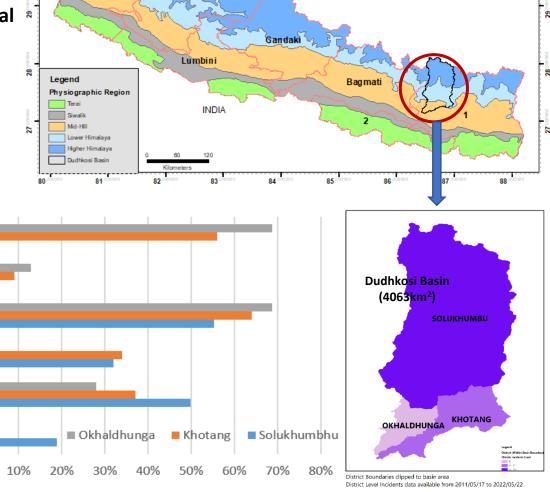
Reduction-Natural Resources

Reduction-Crop Productivity

Reduction-NTFPs

Flooding

Landslides


GLOF

Background:

- Dudhkoshi Sub basin (~4,063km2) in eastern Nepal, comprises- Higher Himalaya, Lower Himalaya and Mid Hill- highly sensitive to the Climate Change
- Dudhkoshi Sub basin highly vulnerable in terms of **physical environmental degradation**, **compounded with the climate change induced multi-hazards**;
- Has highest number of disaster incidents among the provinces of Nepal & the most multi-hazards (Floods/GLOF, Landslides, drought) prone sub basins in Nepal;
- Climate Change has increased the magnitude, intensity & frequency of environmental degradation and unsustainable development activities has undermined livelihoods.

Objective:

To Assess the Environmental Vulnerability and its impacts on livelihood in Dudhkoshi Basin in Eastern Nepal

CHINA

Climate Variability and Change: Nepal Context Sectoral Impacts

Agriculture

- Reduced crop production due to climate related risks such as drought, heavy rain, hailstorm and so on;
- Loss of fertile land due to flood, landslide, soil erosion;
- Introduction of new fungal and bacterial diseases;
- Famine and food scarcity due to regular crop failure.

Forestry & Biodiversity

- Changes in composition and distribution of species;
- Accelerate the rate of species extinction;
- New pests and more forest fire.

Hydro-met hazards

- Enhanced frequency and intensity of floods, landslide and droughts;
- Rapid melting of glaciers and snows increasing threat to glacial lake outburst flood (GLOF)

Health

- Mosquitoes move to higher altitude due to warming increasing prevalence risk of Malaria, Japanese Encephalitis;
- Water borne diseases during disaster events;
- Heat stress and heat wave

Water Resources

- Variation in river runoff:
- Unreliable and unpredictable river flow pattern affecting hydroelectricity power plants;
- Enhanced frequency and intensity of flood and droughts;
- Rapid melting of glaciers and snows increasing threat to Glacial lake outburst flood;
- Shrinkage of fresh tower due to rapid melting of glaciers

- Nepal's contribution to global GHG emission is Negligible - 0.025% (MoPE, INC 2004), 0.027% (MoSTE, SNC 2014) and 0.06% (MoFE, TNC-2020) and 0.09% (WRI CAIT 4.0, 2017)
- Annual <u>maximum temperature</u> increment in Nepal was significantly positive, at 0.056°C/yr over 1971–2014 (DHM 2017);
- Greater warming rate of 0.086°C/year in the Higher Himalaya
- The frequency and intensity of heavy precipitation events have increased over the years
- Nepal loses 647 lives and property worth over USD 23 Million <u>each year</u> to extreme climate events;
- More the 80% of property loss due to disaster is attributable- climatic hazards.

Method: MCDA - Eight primary Environmental Variables

 MCDA – AHP to assess the Physical Environmental Vulnerability &

- Field Assessment Participatory & Consultative Approach
 - HH Level (Survey)
 - Community Level (FGD)
 - Local Government (KII)
 - Provincial (KII)
 - Federal (KII)

Method: MCDA – Environmental and Anthropogenic Variables

A- LULC (Sentinel 2, 21 October 2021)

B- Soil type (*NARC Nepal- Digital Soil Database*)

C- Annual Avg. Rain, (*DHM 1980- 2020*)

D- Road Network (*DOLI, Nepal Google Earth Pro and OSM- 3665 Kilometers*)

E-NDVI (Sentinel 2, 21 October 2021)

F-Drainage network (*ALOS 12.5 M-DEM*)

G- Slope (*ALOS 12.5 M- DEM*)

H- Terrain Wetness Index- TWI

(ALOS 12.5 M- DEM)

I –Rain (RCP4.5) *AR5 IPCCC*

J - Rain RCP8.5) - *AR5 IPCCC*

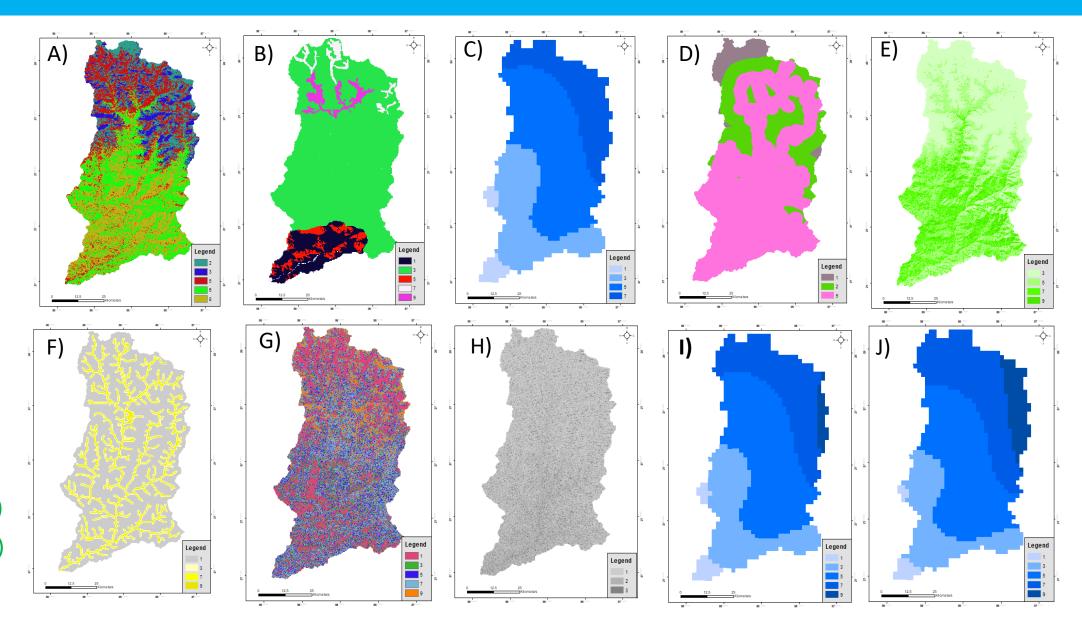
Method: Classification of Environmental Variables (Saaty 2008)

B- Soil type,

C- Annual Avg. Rain,

D- Road Network

E-NDVI,


F-Drainage,

G - Slope

H- Terrain Wetness Index (TWI)

I -Rain (RCP4.5)

J - Rain (RCP8.5)

Method: Classification of Environmental Variables (Saaty 2008)

AHP Pairwise Matrix & Weight of the Factors:

Item Description	Slope	Precipitaiton	Soil Type	Landuse	Dist Road	Dist Drainage	TWI	NDVI	Weight	CR	CI
Slope	1	1	2	2	2	2	2	2	0.20	0.055	0.078
Precipitaiton	1	1	1	1	1	1	0.5	0.5	0.10		
Soil Type	0.5	1	1	1	2	1	1	0.5	0.11		
Landuse	0.5	1	1	1	1	0.5	0.25	1	0.09		
Dist Road	0.5	1	0.5	1	1	1	1	1	0.10		
Dist Drainage	0.5	1	1	2	1	1	2	2	0.14		
TWI	0.5	2	1	4	1	0.5	1	1	0.14		
NDVI	0.5	2	2	1	1	0.5	1	1	0.12		

Factors Weight:

$$WS = \sum_{j=1}^{n} Wj * Cij$$

WS=watershed susceptibility for area i,

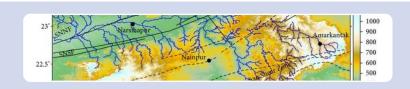
 W_i = relative importance weight of criterion,

 C_{ij} = classified value area i under criterion j, and

n = number criteria.

FACTORS causing Physical Vulnerability

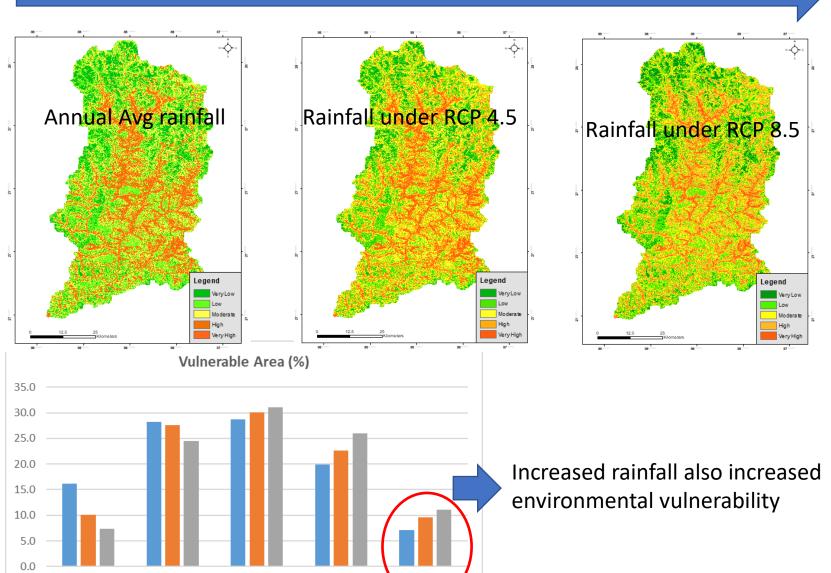
PRECIPITATION (10 %)

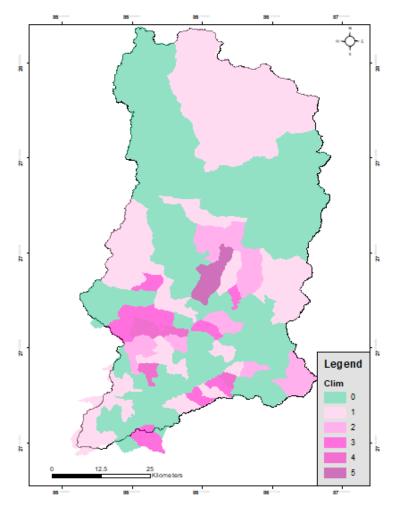

SOIL TYPE (11%)

LAND USE (9 %)

DIST. TO ROAD (10 %)

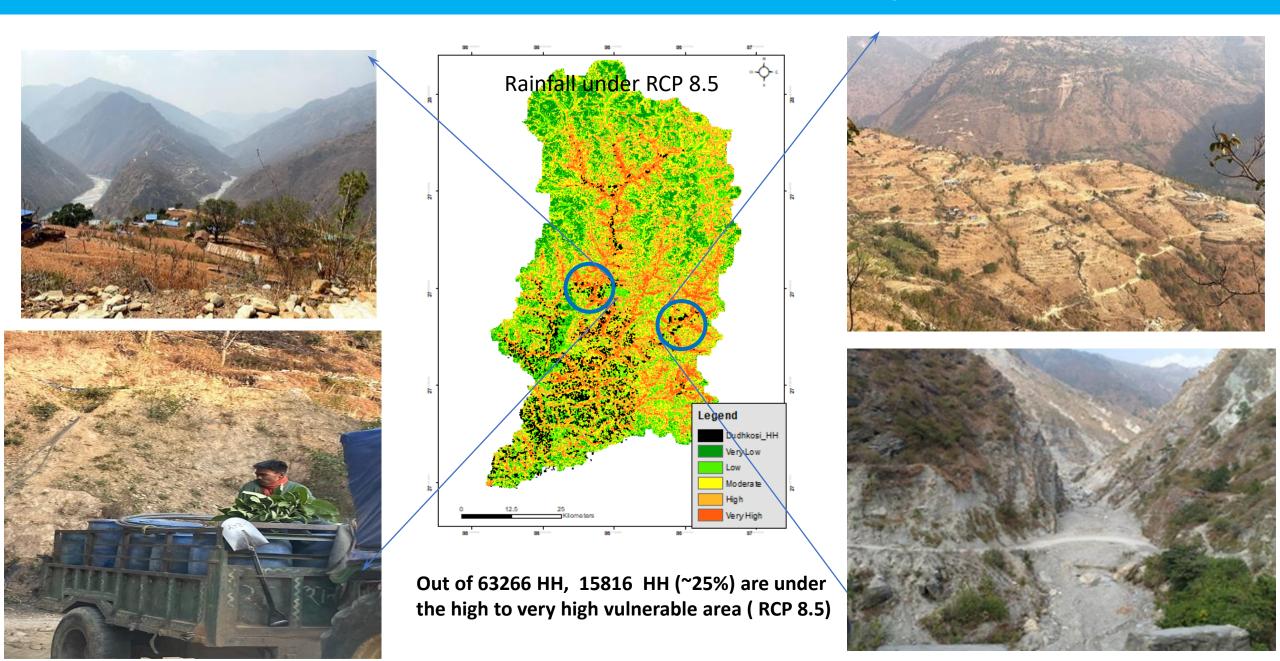
DIST. TO DRAINAGE (14%)


TERRAIN WETNESS (14%)


NDVI (12 %)

Results: Environmental Vulnerability

Increased Rainfall



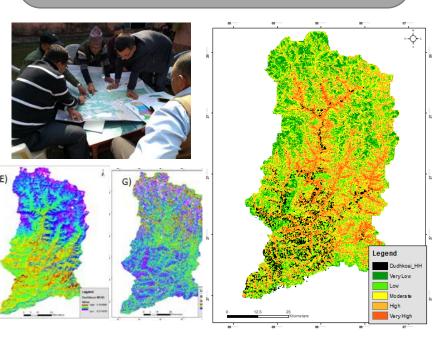
■ EV_Avg ■ EV_4.5 ■ EV_8.5

Ward level Climate Induced Hazards in Dudhkosi Basin 2017-2020 (Govt. of Nepal)

Results: Environmental Vulnerability

Conclusion

- Slope factor has the highest contribution (~20%) for the landscape to degrade followed by distance to drainage and Terrain Wetness Index (~14%) indicated the importance of risk sensitive land use plan and water resource management to reduce the physical environmental vulnerability of the landscape of Dudhkoshi Sub- basin;
- The **Haphazard road construction has 10% contribution** in the environmental vulnerability it is important to assess the sustainable roadside slope protection measures including nature-based solutions (NbS);
- Climate change has caused **to increase** the **rainstorms that triggers** soil erosion, landslides and debris flows which increase the degraded lands, decrease land productivity and quality of lives;
- 25% of the households of the basin are located in high to very-high vulnerable areas needing integrated approach for climate risks assessment and implementation of suitable CCA, DRR and NbS measures for climate/disaster resiliency;


Recommendation: Integrated approach for Building Climate Resilience

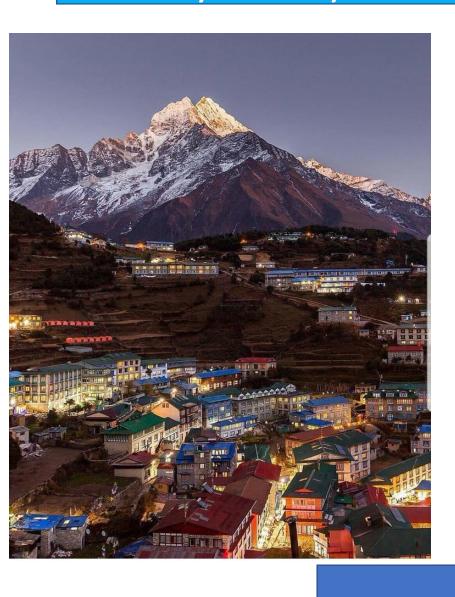
Science and People's Knowledge based Multi Hazards RISK
ASSESSMENT and Mapping

CAPACITY BUILDING

(Community- youth and Local Govt.
Officials' Empowerment)

DRR , NbS , CC Mitigation and Adaptation Measures

Mainstreaming NbS, CCA and DRR in the sectoral planning process


Coordination, Linkages and Networking



Knowledge Sharing and Replication

Resilient Communities

Thank you for your Attention! Feedback, questions are welcome!

References

- Inventory of glacial lakes and identification of PDGLs in Koshi, Gandaki and Karnali basins of Nepal, TAR of China and India (ICIMOD and UNDP 2020)
- DHM, 2017. Observed Climate Trend Analysis in the Districts and Physiographic Regions of Nepal (1971-2014). Department of Hydrology and Meteorology, Kathmandu
- Out-migration and Community Climate Resilience in Changing Climate in Mountain Watershed in Nepal, Kc, D* et al 2021
- Nepal Bipad Portal, Ministry of Home Affair, Government of Nepal
- MoFE, 2019. Climate change scenarios for Nepal for National Adaptation Plan (NAP).
 Ministry of Forests and Environment, Kathmandu, Nepal.
- Saaty, T.L., 2008. Decision making with the analytic hierarchy process. International journal of services sciences, 1(1): 83-98.