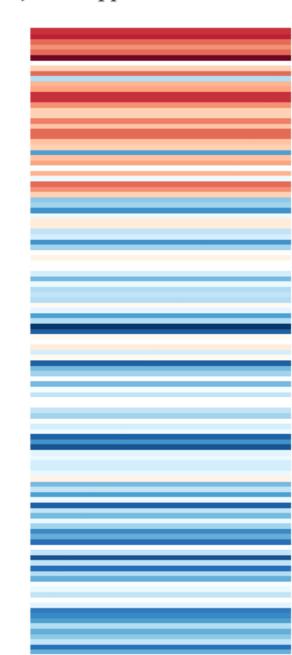

Climate literacy for professionals in the Netherlands

Janette Bessembinder, Jeroen Kluck, Sabine Niederer, Reint Jan Renes

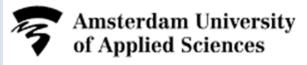


Climate literate person

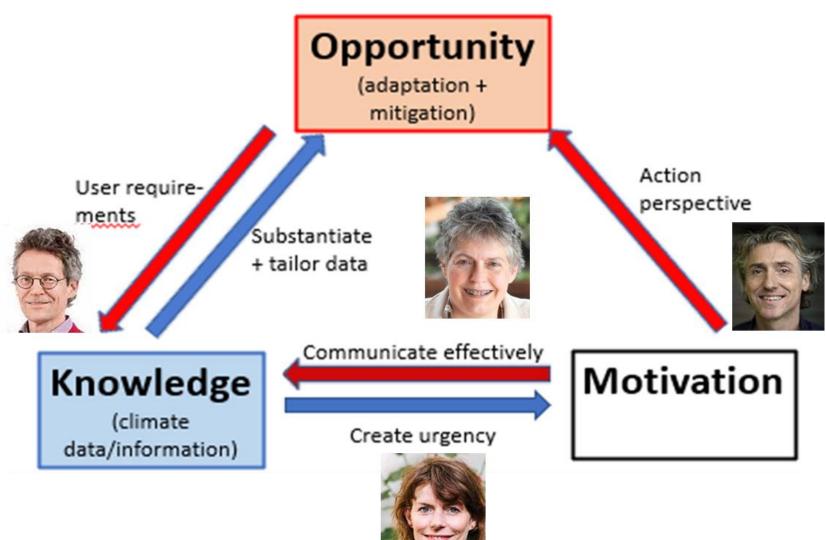
- understands the essential principles of Earth's climate system
- knows how to assess scientifically credible information about climate
- communicates about climate and climate change in a meaningful way
- is able to make informed and responsible decisions with regard to actions that may affect climate

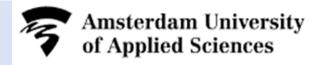
(US Global Change Research Program, 2009)

+ knows the limits of his/her knowledge en when to consult experts


Why climate literacy needed

- Lack of knowledge on climate, climate change, climate data with many professionals
- Professionals play a crucial role in adaptation/mitigation and in communication with decision makers and the general public
- Solid basis in climate information needed for efficient and fast adaptation and mitigation
- Many professionals request help on climate data and information, <u>but also</u> on communication about climate change


Inter/transdisciplinary approach needed



Research on improving climate literacy

- Need to focus on more than just knowledge.
- Also, attention
 needed for how to
 motivate people to
 mitigate and adapt
 and on how to create
 opportunities for this.

Combining expertises to get added value

Amsterdam Universty Applied Sciences

- Water in and around the city
- Psychology for sustainable cities
- Visual Methodologies

KNMI:

- Climate scenarios
- Climate data services

Added value for

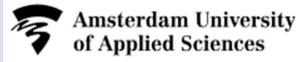
AUAS

- up-to-date knowledge on climate and climate change
- Professionals and students better prepared for societal challenges related to climate change

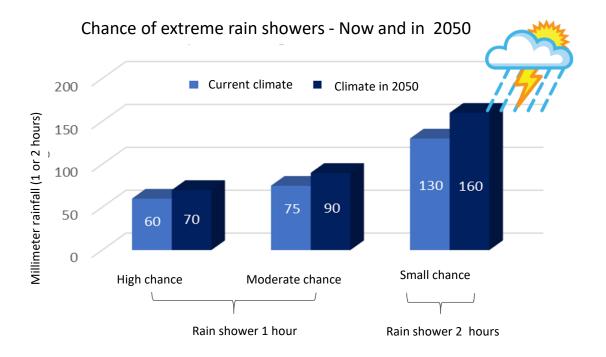
KNMI

- Knowledge from other disciplines
- Broader network of potential users of KNMI climate data, better insight in user requirements

Research themes

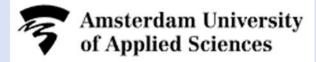

What climate information and data are needed and in what form to act climateconsciously and make the right decisions in the climate transition?

User requirements, tailoring, dealing with uncertainties, etc.


How can climate information and data be presented effectively, so that they are properly interpreted, usable, inspiring and increase climate literacy?

use of language, visualization, tailoring for specific groups, etc.

Examples



When only one estimate for the future is presented, be aware that <u>uncertainties are obscured</u>

When you know that there is <u>limited</u> <u>predictability beyond 2 weeks</u> for western Europe, you know the below "prediction" has little value

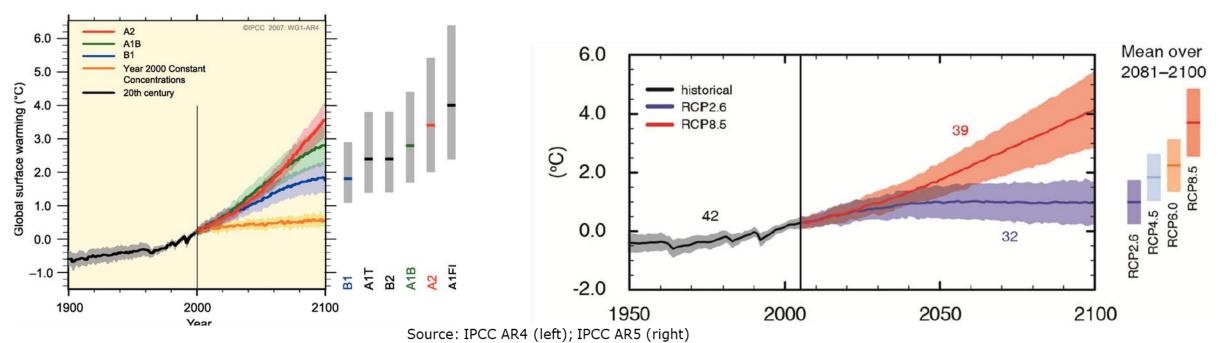
Examples

For effective communication take into account that terms may have different meanings for scientists and public

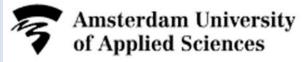
aerosol	spray can	tiny atmospheric particle
positive trend	good trend	upward trend
positive feedback	good response, praise	vicious cycle, self-reinforcing cycle
theory	hunch, speculation	scientific understanding
uncertainty	ignorance	range
error	mistake, wrong, incorrect	difference from exact true number
bias	distortion, political motive	offset from an observation
sign	indication, astrological sign	plus or minus sign
values	ethics, monetary value	numbers, quantity
manipulation	illicit tampering	scientific data processing

Source: Somerville & Hassol, 2011

<u>Interpretation of statistics is often</u> difficult:

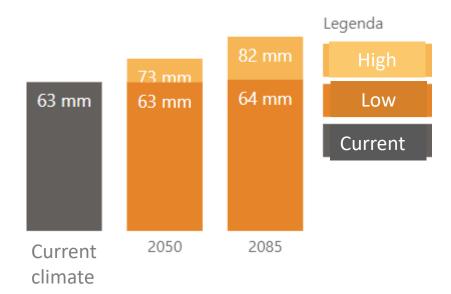

Once in 100 years rainfall event at one location, can occur various times per year in the Netherlands

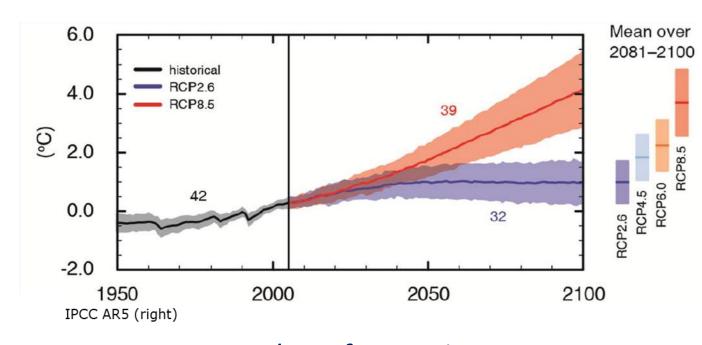
Examples


Middle scenarios are <u>not necessarily the most probable ones</u>, although often implicitly assumed.

And what is the <u>most probable</u>, is often not the <u>most relevant</u> scenario or event, since risks are related to extreme events (less probable).

In AR4 A1B often seen as middle scenario. In AR5 only the 2 extreme scenarios fully presented




Examples of improved presentation

Once in 10 year amount of rainfall in 24 hours

Source: www.klimaateffectatlas.nl

Range of change for the future is presented, implicitly indicating uncertainties

Even number of scenarios: users are less inclined to use the middle one, assuming it is the most probable one