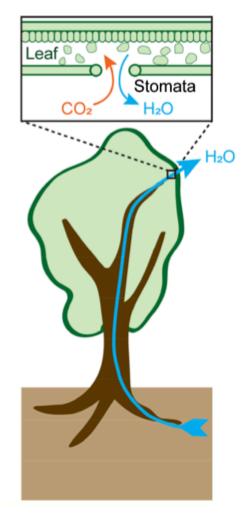


The coordination between hydraulic and photosynthetic traits

Huiying Xu, Han Wang, Iain Colin Prentice, Sandy Harrison, Ian Wright



Plant hydraulics tightly coordinated with photosynthesis

- Photosynthesis is constrained by hydraulics because water transported through the xylem must replenish water lost through stomata during CO₂ uptake
- A tight coordination between hydraulic and photosynthetic traits observed in the field (Scoffoni et al. 2016; Zhu et al. 2018)
- However, this coordination is not fully understood

How do hydraulic and photosynthetic traits coordinate quantitively

 Quantitive understanding could remove a large source of uncertainty in models especially under drought

(Anderegg and Venturas 2020)

Theory to connect hydraulic and photosynthetic traits

Under optimal condition

When transpiration (E, mol m⁻² s⁻¹) reaches maximum, water loss through stomata should equal water transport through xylem to balance water demand and supply

Water supply (Darcy's law)

$$E = K_S \Delta \Psi_{max} SA \rho_w / (LA h) = v_H K_S \Delta \Psi_{max} \rho_w / h$$
 = $E = 1.6 g_S D$, $g_S = A / [c_a(1-\chi)]$

- \circ K_S (kg s⁻¹ m⁻¹ MPa⁻¹): sapwood conductivity
- $\Delta \Psi_{\text{max}}$ (MPa): the maximum difference between leaf and soil water potential
- h (m): path length, approximately equal to plant height
- LA (m²): leaf area
- SA (m²): sapwood area
- $\rho_{\rm w}$ (kg m⁻³): water density
- $v_{\rm H}$ (Huber Value): sapwood to leaf area ratio

Water demand

$$E = 1.6 g_s D$$
, $g_s = A / [c_a(1 - \chi)]$ (Fick's law)

A =
$$m_{\rm C} V_{\rm cmax}$$
, $m_{\rm C} = (c_{\rm i} - \Gamma^*)/(c_{\rm i} + K)$ (Farquhar et al. 1980)

- \circ g_s is stomatal conductance (to CO_2)
- D is leaf-to-air vapour pressure deficit (vpd)
- o A is the assimilation (photosynthesis) rate
- \circ c_a is the ambient partial pressure of CO_2
- \circ $\chi = c_i/c_a$
- \circ c_i is the leaf-internal partial pressure of CO_2 .
- Γ* is the photorespiratory compensation point
- o K is the effective Michaelis-Menten coefficient of Rubisco
- \circ V_{cmax} is the maximum carboxylation capacity

$$\ln v_{H} = \frac{\ln D - \ln c_{a} + \ln m_{C} + \ln V_{cmax} - \ln (1 - \chi) - \ln K_{S} - \ln \Delta \Psi_{max} + \ln h}{\text{environment}}$$
photosynthesis
hydraulics

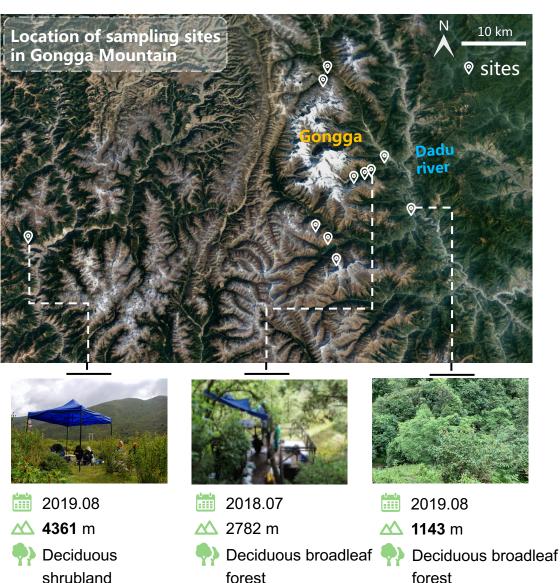
Traits collection in Gongga Mountain, China

11 sites, 176 samples, 107 species 3000-m elevational transect

Hydraulic traits:

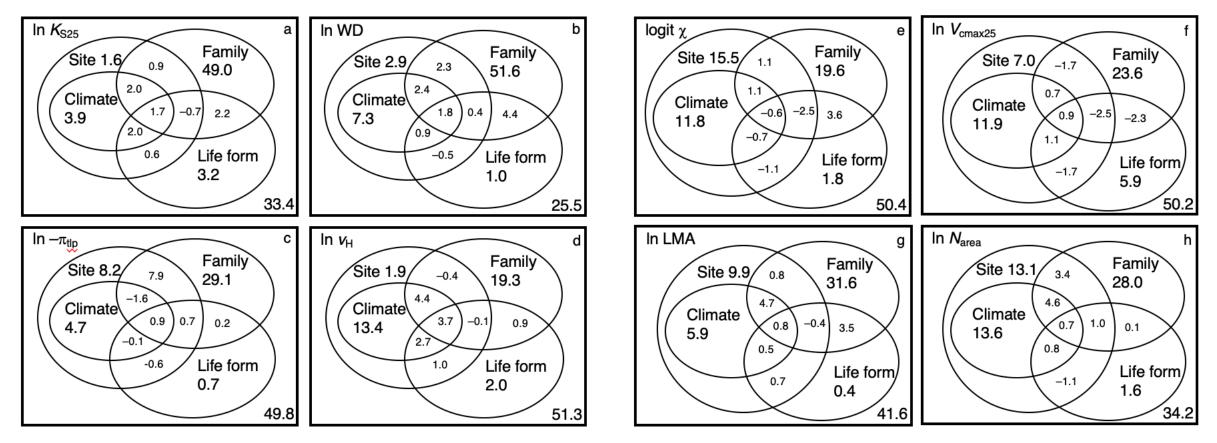
- K_S: sapwood conductivity
- Ψ_{tlp} : turgor loss point
- WD: wood density
- $v_{\rm H}$: sapwood to leaf area ratio

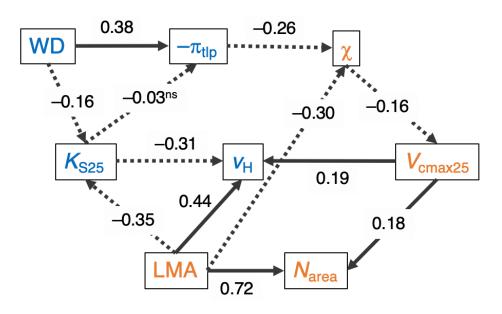
Photosynthetic trait:

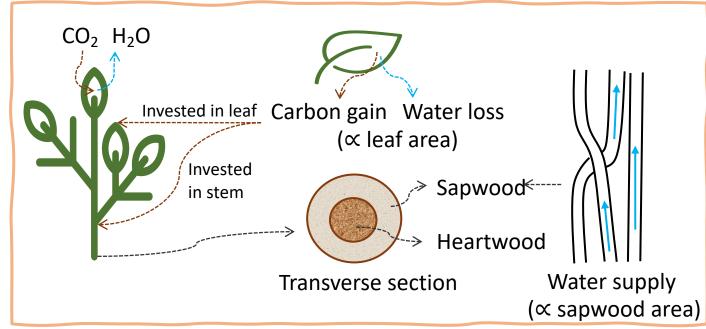

- V_{cmax} : photosynthetic capacity
- χ : C_i/C_a

Leaf economics spectrum trait:

- LMA: leaf mass per area
- *N*_{area}: leaf nitrogen content




Results: variance partitioning of traits

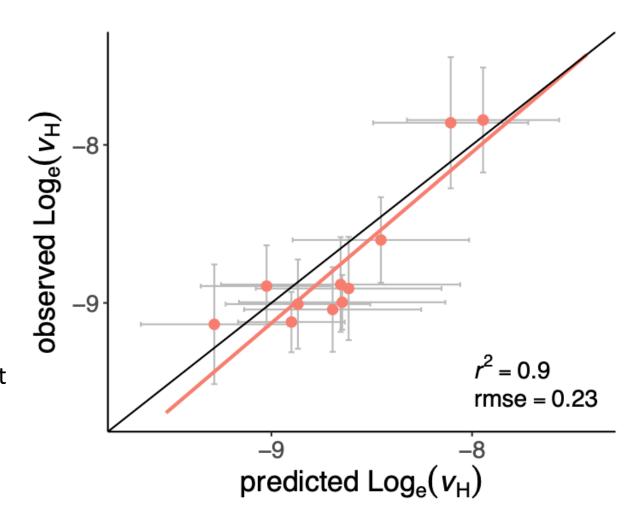

- Hydraulic and leaf-economic traits were less plastic, and more closely associated with phylogeny,
 than photosynthetic traits
- v_H were least influenced by phylogeny, LMA is more controlled by family

Results: path analysis of traits coordination

- v_H as the key trait linking the two sets of traits
- $v_{\rm H}$ decreased with $K_{\rm S25}$, but increased with $V_{\rm cmax25}$
- WD was negatively related to K_{S25} , and positively related to $-\Psi_{tlp}$
- LMA and $-\Psi_{tlp}$ both negatively influenced χ

Results: prediction of Huber Value

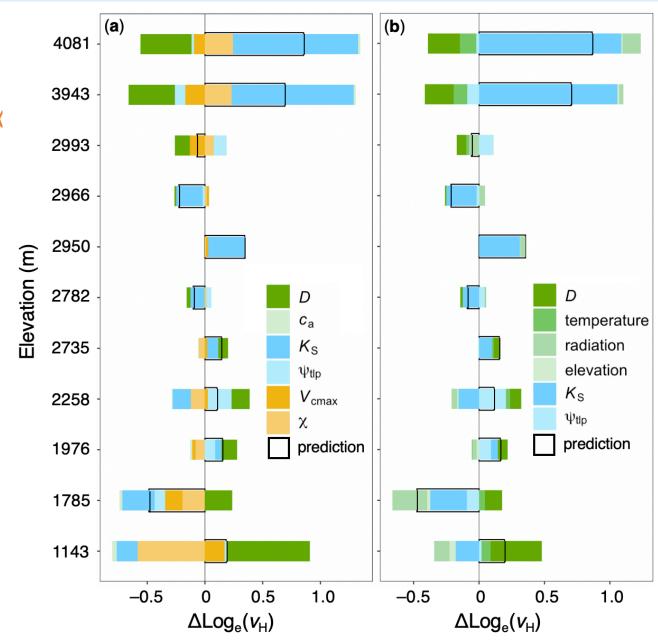
The predictability of v_H using this theory


$$\ln v_{\rm H} = \ln D - \ln c_{\rm a} + \ln m_{\rm C} + \ln V_{\rm cmax} - \ln (1 - \chi) - \ln K_{\rm S}$$

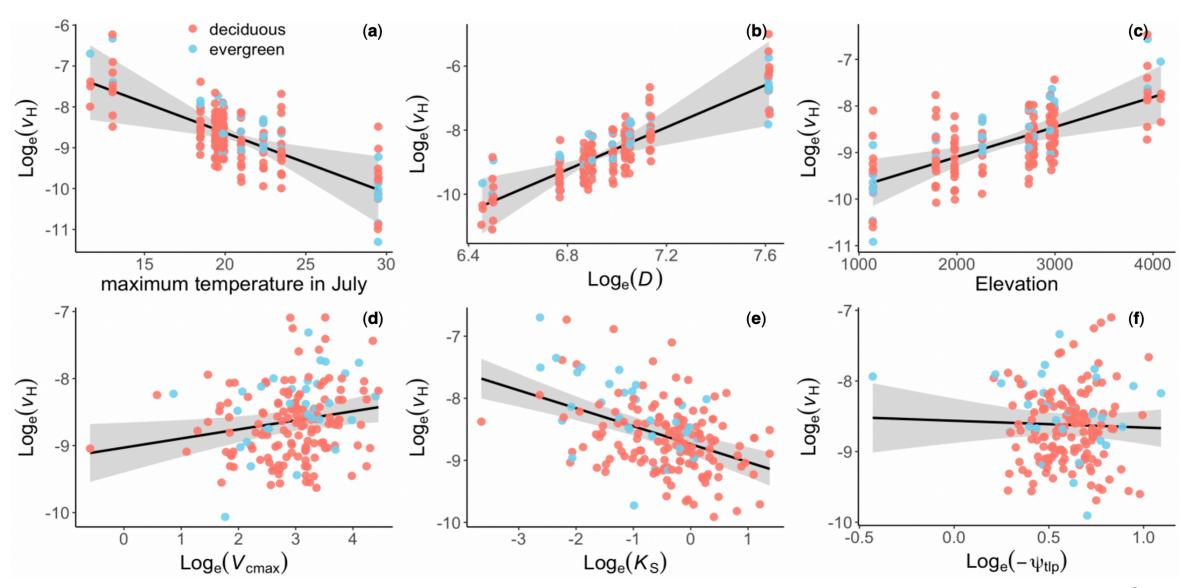
$$- \ln (-\Psi_{\rm tlp}) + C$$

$$m_{\rm C} = (c_{\rm i} - \Gamma^*)/(c_{\rm i} + K)$$

C: fitted intercept, including tree height information


- $V_{\rm cmax}$, χ , $m_{\rm C}$: predicted using temperature, D, radiation and elevation (Wang et al. 2017; Smith et al. 2019)
- K_{S} , Ψ_{tlp} : observed data

Results: contribution of different predictors


(a)
$$\ln v_{\rm H} = \ln D - \ln c_{\rm a} + \ln m_{\rm C} + \ln V_{\rm cmax} - \ln (1 - \chi)$$
$$- \ln K_{\rm S} - \ln (-\Psi_{\rm tlp})$$
(b)
$$\ln v_{\rm H} = \ln D + f({\rm temperature, radiation, D,}$$
$${\rm elevation}) - \ln K_{\rm S} - \ln (-\Psi_{\rm tlp})$$

- K_S and D are the most important predictor of the variation in site-mean v_H
- Ψ_{tlp} contributes little to v_H variation

New Phytologist: 10.1111/nph.17656

Results: Huber value response to different predictors

New Phytologist: 10.1111/nph.17656

Take-home messages

- Hydraulic and leaf-economic traits are less plastic, and more closely associated with phylogeny, than photosynthetic traits
- Plant hydraulics and photosynthesis coordinate to balance water supply and demand
- Huber value is the link between hydraulics and photosynthesis
- Vapour pressure deficit has a **positive** effect on Huber value variation

Thank you!

Email: xuhy19@mails.tsinghua.edu.cn

Twitter: @huiying_xu

New Phytologist: 10.1111/nph.17656

Imperial College London

