

Integrative and Comprehensive Understanding on Polar Environments (iCUPE)

Tuukka Petäjä and the iCUPE consortium

Based on iCUPE project outcomes 2018-2021

- 1) University of Helsinki (UHEL) (coord)
- 2) Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI)
- 3) Consiglio Nazionale delle Ricerche (CNR)
- 4) Centre National de la Recherche Scientifique (CNRS)
- 5) Aarhus University (AU)
- 6) Helmholtz Zentrum Potsdam GFZ Deutsches GeoForschungsZentrum (GFZ)
- 7) Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research GmbH (HZG)
- 8) Leibniz Institute for Tropospheric Research (TROPOS)
- 9) Stockholm Unversitet (SU)
- 10) N.C.S.R. Demokritos, Institute of Nuclear and Radiological Science & Technology, Energy & Safety (NCSR)
- 11) Finnish Meteorological Insitute (FMI)
- 12) Estonian University of Life Sciences (EULS)
- 13) Paul Scherrer Institut (PSI)

GROUND-BASED

4D TARGETED CHEMICAL & MICROPHYSICAL DETAIL POINT-LOCATION TIME SERIES

INITIAL CONDITIONS
ASSIMILATION

MODELS

MODEL VALIDATION

PARAMETERIZATIOS
CLIMATE SENSITIVITY
UNDERLYING MECHANISMS

SPACE-TIME INTERPOLATION, CALCULATION & PREDICTION

Overview: Integrative and Comprehensive Understanding on Polar Environments (iCUPE) – concept and initial results

Tuukka Petäjä¹, Ella-Maria Duplissy¹, Ksenia Tabakova¹, Julia Schmale²,³, Barbara Altstädter⁴, Gerard Ancellet⁵, Mikhail Arshinov⁶, Yurii Balin⁶, Urs Baltensperger², Jens Bange², Alison Beamish³, Boris Belan⁶, Antoine Berchet⁰, Rossana Bossi¹⁰, Warren R. L. Cairns¹¹, Raif Ebinghaus¹², Imad El Haddad², Beatriz Ferreira-Araujo¹³, Anna Franck¹, Lin Huang¹⁴, Antti Hyvärinen¹⁵, Angelika Humbert¹f6,¹७, Athina-Cerise Kalogridis¹³, Pavel Konstantinov¹9,³0, Astrid Lampert⁴, Matthew MacLeod²⁰, Olivier Magand²¹, Alexander Mahura¹, Louis Marelle⁵,²¹, Vladimir Masloboev²², Dmitri Moisseev¹, Valos Moschos², Niklas Neckel¹⁶, Tatsuo Onishi⁵, Stefan Osterwalder²¹, Aino Ovaska¹, Pauli Paasonen¹, Mikhail Panchenko⁶, Fidel Pankratov²², Jakob B. Pernov¹⁰, Andreas Platis⁵, Olga Popovicheva²³, Jean-Christophe Raut⁵, Aurélie Riandet⁰,ª, Torsten Sachsঙ, Rosamaria Salvatori²⁴, Roberto Salzano²⁵, Ludwig Schröder¹⁶, Martin Schön², Vladimir Shevchenko²⁶, Henrik Skov¹⁰, Jeroen E. Sonke¹³, Andrea Spolaor¹¹, Vasileios K. Stathopoulos¹ঙ, Mikko Strahlendorft¹⁵, Jennie L. Thomas²¹, Vito Vitale¹¹, Sterios Vratolis¹³, Carlo Barbante¹¹.²७, Sabine Chabrillatঙ, Aurélien Dommergue²¹, Konstantinos Eleftheriadis¹³, Jyri Heilimo¹⁵, Kathy S. Law⁵, Andreas Massling¹⁰, Steffen M. Noe²ঙ, Jean-Daniel Parls², André S. H. Prévôt², Ilona Riipinen²⁰, Birgit Wehner²⁰, Zhiyong Xie¹², and Hanna K. Lappalainen¹,¹,¹5

https://www.atm.helsinki.fi/icupe/index.php/datasets/list-of-datasets-as-deliverables DS Teasers: https://www.atm.helsinki.fi/icupe/index.php/datasets/submitted-datasets

Datasets

The iCUPE Datasets on:

Dec 2018 - emerging organic contaminants in air from the Arctic

May 2019 - emerging organic contaminants in snow in the Arctic

Jun 2019 - anthropogenic contaminants in snow from polar regions

Jun 2019 - anthropogenic contaminants in ice cores from polar regions

Sep 2019 - emerging organic contaminants in water from the Arctic

Sep 2019 - near-real time aerosol absorption measurements from Zeppelin Station, Nv Ålesund. Svalbard

Jan 2020 - long-term monitoring of gaseous elementary mercury in background air at the polar station Amderma, Russian Arctic

Mar 2020 - classification of artificial light

Mar 2020 - fractional snow cover area in selected sites of Svalbard islands (Norway)

Mar 2020 - small-scale vertical and horizontal variability of atmospheric boundary layer aerosol using unmanned aerial systems

Apr 2020 - time series of lake size changes in Northeast Greenland

May 2020 - validated aerosol vertical profiles from ground-based and satellite observations above selected sites in Finland and Siberia

May 2020 - visible near infrared airborne and simulated EnMAP satellite hyperspectral imagery of Toolik Lake, Alaska

Jul 2020 - aerosol ultrafine and large particle size distribution, scattering, absorption and equivalent black carbon at Ny-Alesund, Svalbard

Jul 2020 - snow spectral reflectance measurements at Ny-Alesund, Svalbard

Jul 2020 - vertical profiles of equivalent black carbon in the Arctic boundary layer at Ny-Ålesund, Svalbard

Sep 2020 - ground-validation of precipitation measurements in high-latitudes

Oct 2020 - organic aerosols in the Arctic

Figure: 2020@INEP-iCUPE: Author: Stephany Mazon

Northern Urbanization

Arctic and Northern region is characterized:

- Much lower population density and not fast growing, but global warming can increase urban developments
- Highly urbanized with ≈ 90% of population living in citie
- Small size cities are dominating, but not less problems
- About 100 urban settlements with > 5000 inhabitants
- Much higher vulnerability and lower sustainability
- Cold climate is a dominant environmental factor.
- Urban nexus includes:
 - Snow impact on management and planning
 - Frozen soil & permafrost infrastructure stability
 - · Frozen surface water water supply and sewage
 - · Dormant vegetation reduced ecosystem services
 - Stagnant and stably stratified atmosphere air pollution and urban heat island
 - Low temperatures health issues and working routines
 - high energy consumption
- Migration is a dominant societal factor in the region
 - More than 60% of urban population are 1st generation migrants
 - High skills but little sense-of-place
 - External, unsustainable development agenda

Baklanov et al. (2021)

4th PACES Open Science meeting (26-28 May 2021) on its Session 2: Integrated Urban Systems (IUS): Twin cities - GURME initiative concluded:

- Complex multidisciplinary approach is needed for building climate and environmentally smart and sustainable Arctic cities;
- Improvements and adaptation of the novel WMO concept of the IUS for Arctic and winter cities are important and require further research;
- It is decided to propose a new GURME project on IUS for Northern Twin
 Cities. Cities in focus and some initial pairs of twin cities have been identified;
- Key science focus will be on very stable boundary layers of winter and Arctic cities and their interactions with urban processes, air pollution and climate change.

- iCUPE work contributed to the definition of Northern twin city concept
- Sustainability of Arctic cities

Eurasian river spring flood observations support net Arctic Ocean mercury export to the atmosphere and Atlantic Ocean

Jeroen E Sonke¹, Roman Teisserenc², Lars-Eric Heimbürger-Boavida³, Mariia Petrova³, Nicolas Marusczak¹, Theo Le Dantec², Artem Chupakov⁴, Chuxian Li², Colin Thackray⁵, Elsie Sunderland⁶, Nikita Tananaev⁴, Oleg Pokrovsky¹

250 Yenisei River — DHg
200 — PHg
150 — THg
50 — THg

Pan-arctic rivers: 44 ± 4 Mg/y

iCUPE: Sonke et al., 2018, PNAS

Sonke et al.

June/July net Hg air→sea flux ...if 30% of river Hg → AO Permafrost Hg→AO→air?

iCUPE: Atmospheric Hg 0 isotope fingerprints: Δ^{200} Hg

Summer peak is not from terrestrial sources!

Origins: mid-latitude anthropogenic Hg emissions + natural Hg Transport: oceans, air, rivers Fate (of permafrost soil Hg): partial burial on shelf

Atmospheric deposition 76 99 Evasion 0-30cm soil: 72,000 Sea ice Terrestrial PAC Shelf sediments Bering Strait 6 Oceanic MeHg ATL Total inputs Total outputs 204 Total reservoir 1900 Deep sediments 4

Petrova et al., 2020 Marine Chemistry; see also AMAP 2021 soon

Improved modeling of impact assessment of pollutants in

the Arctic

 We can model source-to-human pathways of persistent organic pollutants to support impact assessments

- In iCUPE, for effectiveness evaluation of the Stockholm Convention in the 2020 WEOG and Global reports (1)
- For a well-characterized POP, PCB153, we captured 58% of variance in log(c) in breastmilk, with RMSE of a factor of 4.5 (2)
- Pollutants with properties outside the range of "traditional POPs" present new challenges for models
 - Low volatility
 - Partly addressed in iCUPE with a new non-equilibrium distribution model (3)
 - High water solubility
 - · Bioaccumulation due to protein binding

⁽¹⁾ http://www.pops.int/Implementation/GlobalMonitoringPlan/MonitoringReports/tabid/525/Default.aspx

⁽²⁾ MacLeod et al. Environmental Science: Processes & Impacts, 20, 747-756, 2018

⁽³⁾ Zhao et al. Environmental Science & Technology, 55, 14, 9425–9433, 2021

Evaluation of local pollution sources in the Eurasian Arctic based on integrated data

analysis and modelling - conclusions

 Combined analysis using airborne, satellite data & modelling to identify deficiencies in current inventories

- Daily variability important for gas flaring
- Contributed to Arctic Council AMAP SLCF climate assessment 2021

Law et al.

Canada Canada

Equal contributions of natural and anthropogenic emissions to Arctic OA

El Haddad et al.

Artificial light in the Arctic: Light source classification on Yamal Peninsula

SSENTIAL ERA-PLANET

- Bright light sources in the Arctic can also be classified together with the use of high resolution optical remote sensing data
- The majority of light emissions come from industry and gas flaring

Article

Dark Glacier Surface of Greenland's Largest Floating Tongue Governed by High Local Deposition of Dust

Angelika Humbert ^{1,2,*}, Ludwig Schröder ¹, Timm Schultz ³, Ralf Müller ³, Niklas Neckel ¹, Veit Helm ¹, Robin Zindler ^{1,2}, Konstantinos Eleftheriadis ⁴
Roberto Salzano ⁵ and Rosamaria Salvatori ⁶

Humbert et al.

Conclusions

Humbert et al.

Prof. Tuukka Petäjä, University of Helsinki tuukka.petaja@helsinki.fi +358 50 41 55 278

Support from Academy of Finland, European Commission, Regional Council of Lapland, Helsinki-Uusimaa Regional Council, and Business Finland are gratefully acknowledged.

