

A STATISTICAL STUDY OF DIPOLARIZATION FRONTS OBSERVED BY MMS

Laboratoire de Physique des Plasmas

soboh.alqeeq@lpp.polytechnique.fr

S. W. Alqeeq, O. Le Contel, P. Canu, A. Retinò, T. Chust, L. Mirioni, A. Alexandrova, A. Chuvatin, N. Ahmadi, R. Nakamura, F. D. Wilder, D. J. Gershman, P. A. Lindqvist, Yu. V. Khotyaintsev, R. E. Ergun, J. L. Burch, R. B. Torbert, C. T. Russell, W.Magnes, R. J. Strangeway, K. R. Bromund, Hanying Wei, F. Plaschke, B. J. Anderson, B. L. Giles, S. A. Fuselier, Y. Saito, and B. Lavraud

One MMS DF example 16:46:30-16:49:00 UT

BLPP

Alqeeq et al. 2021

DF/fast flow properties [e.g. Runov et al., GRL 2009, Sergeev et al., GRL, 2009]

- Transition between cold dense plasma at rest to hot tenuous fastly moving plasma
- MVA analysis at (16:47:45/16:48:00):
 LMN frame of DF:

L = (0.370, 0.231, 0.899)

M=(-0.485, 0.873,-0.025)

N=(-0.791, -0.427, 0.436)

- Increase of B,
- Increase of Vi_N
- Increase of $T_{para,e} \sim T_{perp,e} \sim 1 \text{ keV}$
- Increase of $T_{para,i} \sim T_{perp,i} \sim 6 \text{ keV}$
- Decrease of N_{e,i}

A statistical study of DFs Algeeg et al. 2022 In Prep.

BLPP

- The statistical study include the full magnetotail season of 2017 in order to compare with Zhong et al., 2019 study.
- We found 133 DF events near the Earth's magnetotail equator (|**Bx**|<5nT), using an AIDApy tool to request **Bz** and **Vi** increase and **Ne** decrease.
- This first automatic selection is then adjusted manually with the following criteria:
- Burst mode (partmoms) data are available at least 30s before and after the DF. The head of the DF denotes the time t0.
- **Bz** increase > 5 nT
- Vi > 150 km/s
- $N_{e,i}$ decrease
- $T_{para,e-i} \sim T_{perp,e-i}$ increases.

The colors represent the change in the northward magnetic field component during the DF, <**Bz**>, and the arrows represent the DF propagation direction perpendicular to the boundary (obtained by the timing method), projected onto the X/Y plane in GSM.

An overview of DFs

BI-PP

Characteristics overview of DFs

- The Class 1 (74.4%) corresponds to a slow decrease of the magnetic field after the DF and is associated with smaller ion velocity and hotter plasma.
- The Class 2 (25.6%) has the same time scale for the rising and the falling of the magnetic field (a bump) associated with a minimum of ion and electron pressures and faster velocity as shown in Alqeeq et al. 2021.

Current density comparisons

MMS - 4 Spacecraft average at 0.3s

Current density comparison between:

 $Jpart_{M} = en(vi-ve)_{M}$

Jcurl_M= (CurlB/mu)_M

 $Jdia_M=B_L/B^2 \nabla n (Pi+Pe)$

 $Jdia_{\{M,i\}} > Jdia_{\{M,e\}}$

Ion diamagnetic current is dominant (~72%).

Small values but good agreement within <10nA/m2

In Class 2 the reversal in Jpart_M is due to the reversal of the diamagnetic current.

Energy conversion comparisons, MMS - 4 Spacecraft average at 0.3s

Class1:

- In (s/c frame):

 Ahead of DF, Jpart.E >0 The energy is dissipated from the electromagnetic field to the particles.
- In (Ion & electron frames):
 Ahead of DF, Jpart.E'<0 Dynamo (energy goes from particles to field).</p>

Class2:

- In (s/c frame):
 Ahead of DF, Jpart.E >0 The energy is dissipated from
 the electromagnetic field to the particles.
 Behind of DF, Jpart.E <0 The energy is transferred from
 the particles to the electromagnetic field.
- In (Ion & electron frames):
 Ahead of DF, Jpart.E'<0 Dynamo (energy goes from particles to field)

In Class 2 the reversal in (S/C & ion/electron frames) is due to the reversal of the diamagnetic current.

Summary & Conclusion

For the full magnetotail season of 2017:

- Based on a superposed epoch analysis of DF basic properties (magnetic field, density, velocity, ...) we distinguish two subcategories of events depending on the shape of the DF.
- > The **Class 1** (74.4%) corresponds to a slow decrease of the magnetic field after the DF and is associated with smaller ion velocity and hotter plasma.
- The **Class 2** (25.6%) has the same time scale for the rising and the falling of the magnetic field (a bump) associated with a minimum of ion and electron pressures and faster velocity as shown in Algeeq et al. 2021, and it found mostly on the duskside.
- For both categories we found a good agreement between current densities calculated from particles, Curl B and single S/C method (Jdia_M).
- > For both categories we found that ions are mostly decoupled from the magnetic field by the Hall fields.
- The electron pressure gradient term is also contributing to the ion decoupling and likely responsible for an electron decoupling at DF. We also analyzed the energy conversion process.
- For the **Class 1** we found that the energy dissipation in the **S/C frame** is transferred from the electromagnetic field to the plasma ($\mathbf{J} \cdot \mathbf{E} > 0$) ahead or at the DF.
- For the **Class 2**, we found the same behavior ahead or at the DF whereas it is the opposite (**J·E**<0, Dynamo) behind due to the reversal of the diamagnetic current.
- In the fluid frame, we found that the energy dynamo is mostly transferred from the plasma to the electromagnetic field $(\mathbf{J}\cdot\mathbf{E}'<0)$ ahead or at the DF for both subcategories.

Backup/ Energy conversion (I)

In (s/c frame):

- Max of Jpart_M~ -20 nA/m2
- $E_{\rm M}$ ~ -2.5 mV/m around 1647:45 UT at DF.
- Ahead of the front, the energy is dissipated from the electromagnetic field to the particles.
- Behind the front, the energy is transferred from the particles to the electromagnetic field.
- Max of J.E +0.023 nW/m³ at DF and J.E
 0.043 nW/m³ after DF.
- Max of J.E 0.01 nW/m³ at Flux rope.

In (Ion & electron frames):

• We checked that J.(E+vexB) = J.(E+vixB) for each MMS as

- for each MMS as J.(vixB-vexB)=J.(JxB/ne)=0, [Yao et al., 2017. JGR1
- Using 4 s/c avg J.(E+vexB) = J.(E+vixB)
 also for both Jpart & Jcurl
 => Good confidence with all J.E'
- calculations.
 J.E'>0, Dissipation (energy goes from field to particles) ~ after the DF (from
- single s/c MSS1, 3)
 J.E'<0, Dynamo (energy goes from particles to field) ~ at DF (from 4 s/c and all singles s/c)
- These results are consistent with [Yao et
- al., 2017, JGR].
 The energy conversion is not homogeneous at the scale of the tetrahedron (electron scales).

DF1: Energy conversion MMS - 4 Spacecraft average at 0.3 s

S. W. Algeeg, EGU22, 27 May 2022