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Introduction

The wind stress in current models is estimated by

τ a(0) = ρaCd |S10|S10

• ρa is the air density
• S10 is the mean wind at 10 m
• Cd = κ2

ln2(10/z0)
is the drag coefficient

Over the ocean, the roughness length is estimated

z0 = α
u2
∗

g
+

0.11× νa

max(u∗, 0.05)
,

α is the Charnock coefficient (depend on wave states), νa is the air kinematic viscosity.
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Motivation
Two limitations of current parameterization (τ a(0) = ρaCd |S10|S10):

1. The wind stress always aligns with wind direction

2. The momentum flux is always from atmosphere to ocean/waves (downward)

Based on eddy-covariance method, τ a = −u′w ′ − v ′w ′.
In the wave boundary layer,

τ a = −u′w ′ − v ′w ′ − ũw̃ − ṽ w̃
(Buckley and Veron, 2016)
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Motivation
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How can we paramter ize the stress in WBL?

The wind stress in the wave boundary layer:

τ a(z) = τ t(z) + τ v(z) + τww(z) + τ sw(z),

• τ t shear-induced turbulent stress
• τ v viscous stress
• τww wind wave-induced stress (downward)
• τ sw swell wave-induced stress (upward)

Note:

1. Wave-induced stresses can alter from the wind direction.

2. Swell-induced stress is upward (from waves to atmosphere)

3. Wave-induced stress can extend to a certain height.
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How can we paramter ize the stress in WBL?
The wind stress in the WBL:

τ a(z) = τ t(z) + τ v(z) + τww(z) + τ sw(z),

At air-sea interface (z ≈ 0), the shear-induced
stress approches to 0:, then

τ a(0) = τ v(0) + τww(0) + τ sw(0)

In the wave boundary layer (z > 0): τww (z)
decay faster and τ v(z) approach 0, then

τ a(z) = τ t(z) + τ sw(z)
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How can we paramter ize the stress in WBL?

The wind stress terms are estimated by:

τ v(0) = ρaCv |S10|S10

τww(0) = ρw g
∫ 2π

0

∫ ∞
0

k

ω
Sindωdθ,

τ sw(0) = ρw g
∫ 2π

0

∫ ∞
0

k

ω
Soutdωdθ,

τ t(z) = −ρaKm
dS
dz
,

τ sw(z) = τ sw(0)e−Akpz

Note:

1. τ v(0), τ t(z) align with the mean wind direction.

2. The direction of τww(z) and τ sw(z) is determined by 2D wave spectrum.
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How can we paramter ize the stress in WBL?

In current models, the wind speed at 10 m,

Slog(z) =
u∗
κ

[
ln

z
z0
− ψm(z/L)

]
.

After considering the wave-induced stress:

U10 = Slog(10)cos(θwind)− Ssw (10)cos(θsw )

V10 = Slog(10)sin(θwind)− Ssw (10)sin(θsw ),

in which θwind and θsw are the wind direction and the direction of the swell-induced stress. and

Ssw (z) =
τ sw (0)
ρaκu∗

∫ z

∞
e−Akpz/zdz. (1)
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WRF-SCM simulations

Simulations using the single-column version of the Weather Research and Forecasting Model
(WRF-SCM)
• MYNN-2.5 turbulence closure scheme
• 100 vertical layers in the bottom 6 km of the atmosphere.
• 5 m in the lowest model level and 16 layers are in the lowest 200 m
• The geostrophic wind is Ug = 5 ms−1 and Vg = 0 ms−1.
• The initial conditions of the wind and temperature are from the Large-Eddy simulation

(ZN1) in Nilsson et al., 2012.
• The friction velocity is 0.11 ms−1 in all simulations.

9 / 20



Impact of τsw :
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• τsw (0) aligns with
wind.

• xx in name S xx
represents τsw (0)/τl

τl is the downward
momentum flux

• Neutral condition
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Impact of the direct ion difference between τ l and S10 :
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• τsw (0) = 0
• The direction

difference between τl

and S10 is 10o on the
right and left in R 10
and L 10, respectively

• Neutral condition
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Impact of the direct ion difference between τsw and S10 :
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xx and yy in the name
S xx Dyy
• xx represent τsw/τl

• yy represent the
direction difference
between τsw and τl
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Impact of the atmospher ic stabi l i ty:
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xx and yy in the name
S xx Cyy or S xx Syy
• xx represent τsw/τl

• yy represent the heat
flux in convective (C)
or stable (S)
conditions
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Impact of the decay coeff icient of swell- induced upward momentum
flux:
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xx and yy in the name
S xx DCyy
• xx represent τsw/τl

• yy represent the decay
coefficient A in
τ sw(z) =
τ sw(0)e−Akpz
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Real case simulations

One-month long simulations (Jan., 2017) are done over the ocean off California using an
atmosphere-wave coupled model (UU-CM).

Control experiment:
τ a(0) = ρaCd |S10|S10,

z0 = α
u2
∗

g
+

0.11× νa

max(u∗, 0.05)
,

α =
0.0095√

1− τww (0)/τl
.

Slog(z) =
u∗
κ

[
ln

z
z0
− ψm(z/L)

]
.
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Real case simulations

One-month long simulations (Jan., 2017) are done over the ocean off California using an
atmosphere-wave coupled model (UU-CM).

Coupled experiment:
• At air-sea interface (z ≈ 0)

τ a(0) = τ v(0) + τww(0) + τ sw(0)

• In the wave boundary layer (z > 0):

τ a(z) = τ t(z) + τ sw(z)

• The wind speed at 10 m:

U10 = Slog(10)cos(θwind)− Ssw (10)cos(θsw )

V10 = Slog(10)sin(θwind)− Ssw (10)sin(θsw ),
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Real case simulations

(A): the mean τsw [×10−3Nm−2], (B) the ratio of the mean τsw and τl [%]
(C) the mean S10 [ms−1], (D) the difference of S10 between FUL and CTL [ms−1]
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Real case simulations

(E) the mean Hs [m], (F) the difference of Hs between FUL and CTL [cm]
(G) the mean T2 [◦C], (H) the mean difference of T2 between FUL and CTL [◦C]
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Real case simulations

(I) the mean latent heat flux [Wm−2], (J) the difference between FUL and CTL [Wm−2]
(K) the mean sensible heat flux [Wm−2], (L) the difference between FUL and CTL [Wm−2].
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Conclusions

• The swell-induced upward momentum flux increases the surface wind and changes the
wind direction

• The misalignment between the upward momentum flux and wind has a more significant
impact on the wind profile than that from the downward momentum flux

• The impact of swell-induced upward momentum flux decreases with atmospheric
convection.

• The surface wind can be altered up to 5% by ocean surface gravity waves over the ocean
off California.
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