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Introduction

The wind stress in current models is estimated by

Ta(0) = paCa|S10|S10

® p,is the air density
® Siois the meanwind at 10 m
* Cy= m is the drag coefficient

Over the ocean, the roughness length is estimated

S Ué+ 0.11 X vg
0= %9 T max(u.,0.05)

« is the Charnock coefficient (depend on wave states), v, is the air kinematic viscosity.
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Motivation
Two limitations of current parameterization (7.(0) = paCq4|S10|S10):
1. The wind stress always aligns with wind direction
2. The momentum flux is always from atmosphere to ocean/waves (downward)

Based on eddy-covariance method, 7, = —u'w’/ — v/w’.
In the wave boundary layer,

— ~ ’
u = u + u + u
A A
2?75 26 0 26 (ms)
i .

j

Ta= —UW — VW — TW — VW

(Buckley and Veron, 2016) v
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Motivation

WIND WAVES

Wind Waves are generated by immediate local wind.

They are not self-sustaining and will die out when

SWELL WAVES

Swell Waves are self-sustaining and generated by
energy beneath the ocean’s surface, no longer
needing local wind.

the wind stops.
Wind Direction @)

End of local wind source, Wind Wave Period
(T ired
@) Waves become Swell Waves Mt
reach B)
A Wave Height B

Waves with long wavelengths and periods arriving from a distant source are considered Swell.
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How can we paramterize the stress in WBL?

The wind stress in the wave boundary layer:

Ta(2) = Te(2) + Tv(2) + Tww(2) + Tsw(2),
® 1, shear-induced turbulent stress
® T, viscous stress
® T.w Wind wave-induced stress (downward)

* T4 swell wave-induced stress (upward)

Note:
1. Wave-induced stresses can alter from the wind direction.
2. Swell-induced stress is upward (from waves to atmosphere)
3. Wave-induced stress can extend to a certain height.

4
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How can we paramterize the stress in WBL?
The wind stress in the WBL:

height, =

Ta(2) = 74(2) + 7(2) + 7w (2) + Tsw (2),

z>0

At air-sea interface (z ~ 0), the shear-induced
stress approches to 0:, then

7a(0) = 7v(0) + Tww(0) + Tsw(0)
In the wave boundary layer (z > 0): Tww(2)
decay faster and (z) approach 0, then

Ta(2) = 74(2) + 7w (2)
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How can we paramterize the stress in WBL?

The wind stress terms are estimated by:

TV(O) = pan\S1o|s10
2w oo k
T (0) = pug / / K sdwas,
o Jo W

21 oo k
7ew(0) = pug / / X Suudludd,
0 0

as

Ti(2) = *PaKmay

Tew(2) = Tow(0)e™ 07

Note:
1. 7,(0), 7¢+(z) align with the mean wind direction.
2. The direction of 7ww(2) and 74 (z) is determined by 2D wave spectrum.
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How can we paramterize the stress in WBL?

In current models, the wind speed at 10 m,
Us z
S/og(z) = ; |:/n;0 — Q,ZJm(Z/L):| .

After considering the wave-induced stress:
Uso = Siog(10)cos(Owina) — Ssw(10)cos(Gsw)
Vio = Siog(10)8in(Owina) — Ssw(10)sin(0sw),

in which 6,nq and s, are the wind direction and the direction of the swell-induced stress. and

Sew(z) = ;ZWT(LZ) / e %7/ zdz. (1)
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WRF-SCM simulations

Simulations using the single-column version of the Weather Research and Forecasting Model
(WRF-SCM)

MYNN-2.5 turbulence closure scheme

® 100 vertical layers in the bottom 6 km of the atmosphere.

5 m in the lowest model level and 16 layers are in the lowest 200 m

The geostrophic windis Uy =5 ms~" and V, =0 ms~".

® The initial conditions of the wind and temperature are from the Large-Eddy simulation
(ZN1) in Nilsson et al., 2012.

The friction velocity is 0.11 ms~' in all simulations.
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Impact of 7gy:
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Impact of the direction difference between 7, and Syy:
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Impact of the direction difference between 7¢, and Siy:
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direction difference
between 75y and
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Impact of the atmospheric stability:

400
— 530
350 1 — 5.30_C003 A
300 — s30.co1
—— 5305001
— 2504 === S_120 y
§ -=- 5_120_C003 ,t
£ 2009 __. 57120 co1 i
2 150 --- 5.120_5001 i
" : xx and yy in the name
1 7
“ b St S_xx_Cyy or S_xx_Syy
W L
W N 4
°3 4 5 6 -10 -05 00 05 10 265 270 275 280 285 ¢ xxrepresent 7-SW/T’
Ums™] Vms™] Wind direction [°]
w00 ® yy represent the heat
15 E flux in convective (C)
300 or stable (S)
T 250 conditions
% 200
T
T 150
100
L)
50 ;\ P
0 LS —— b &
000 002 004 006 008-0001 0000 0001 0002 0 10 20 30 &
TKE [m?s2] Shear production [m?s~2] Mixing length [m] UPPSALA
UNIVERSITET

13/20



Impact of the decay coefficient

of swell-induced upward momentum
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S_xx_DCyy
® xx represent Tew /7
® yy represent the decay
coefficient Ain
Tew(Z) =
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Real case simulations

One-month long simulations (Jan., 2017) are done over the ocean off California using an
atmosphere-wave coupled model (UU-CM).

Control experiment:
7a(0) = paCy|S10|Sio,

L L 011 xva
=Yg " max(u.,0.05)’
0.0095

R ——r ;) y
Sig(2) = % {/nzi0 _ wm(z/L)} .
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Real case simulations

One-month long simulations (Jan., 2017) are done over the ocean off California using an
atmosphere-wave coupled model (UU-CM).

Coupled experiment:
® At air-sea interface (z =~ 0)

7a(0) = 74 (0) + Tww(0) + Tsw (0)
® |n the wave boundary layer (z > 0):
Ta(2) = 74(2) + Tsw(2)
® The wind speed at 10 m:
Uio = Siog(10)cos(Oing) — Ssw(10)cos(fsw)
Vio = Siog(10)8in(Gwina) — Ssw(10)sin(0sw),
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Real case simulations
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Real case simulations
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Real case simulations

ki
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Conclusions

® The swell-induced upward momentum flux increases the surface wind and changes the
wind direction

® The misalignment between the upward momentum flux and wind has a more significant
impact on the wind profile than that from the downward momentum flux

® The impact of swell-induced upward momentum flux decreases with atmospheric
convection.

® The surface wind can be altered up to 5% by ocean surface gravity waves over the ocean
off California.
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