A turbulence closure scheme in the wave boundary layer and its application in a coupled model

Lichuan Wu¹ Fangli Qiao²
Lichuan.wu@geo.uu.se

¹Department of Earth Sciences, Uppsala University, Sweden

²First Institute of Oceanography, Qingdao, China

May 25, 2022

Introduction

The wind stress in current models is estimated by

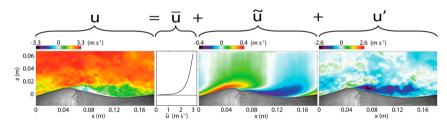
$$oldsymbol{ au}_{\mathrm{a}}(0)=
ho_{a}C_{d}|S_{10}|oldsymbol{S}_{10}$$

- ρ_a is the air density
- S₁₀ is the mean wind at 10 m
- $C_d = \frac{\kappa^2}{\ln^2(10/z_0)}$ is the drag coefficient

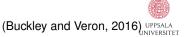
Over the ocean, the roughness length is estimated

$$z_0 = \alpha \frac{u_*^2}{g} + \frac{0.11 \times \nu_a}{max(u_*, 0.05)},$$

 α is the Charnock coefficient (depend on wave states), ν_a is the air kinematic viscosity.



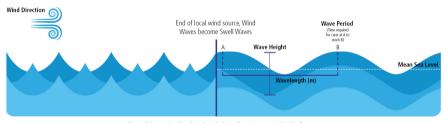
Motivation


Two limitations of current parameterization ($\tau_a(0) = \rho_a C_d |S_{10}| \mathbf{S}_{10}$):

- 1. The wind stress always aligns with wind direction
- 2. The momentum flux is always from atmosphere to ocean/waves (downward)

Based on eddy-covariance method, $\tau_{\rm a} = -\overline{u'w'} - \overline{v'w'}$. In the wave boundary layer,

$$oldsymbol{ au}_{
m a} = - \overline{ extstyle u' extstyle w'} - \overline{ extstyle v' extstyle w'} - \overline{ ilde{ extstyle u}} \overline{ ilde{ extstyle w}} - \overline{ ilde{ extstyle v}} \overline{ ilde{ extstyle w}}$$


Motivation

WIND WAVES

Wind Waves are generated by immediate local wind. They are not self-sustaining and will die out when the wind stops.

SWELL WAVES

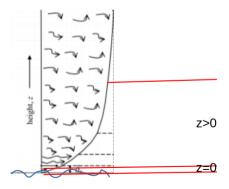
Swell Waves are self-sustaining and generated by energy beneath the ocean's surface, no longer needing local wind.

Waves with long wavelengths and periods arriving from a distant source are considered Swell.

The wind stress in the wave boundary layer:

$$oldsymbol{ au}_{\mathrm{a}}(\mathbf{Z}) = oldsymbol{ au}_{\mathrm{t}}(\mathbf{Z}) + oldsymbol{ au}_{\mathrm{v}}(\mathbf{Z}) + oldsymbol{ au}_{\mathrm{ww}}(\mathbf{Z}) + oldsymbol{ au}_{\mathrm{sw}}(\mathbf{Z}),$$

- ullet $au_{
 m t}$ shear-induced turbulent stress
- $au_{
 m v}$ viscous stress
- au_{ww} wind wave-induced stress (downward)
- au_{sw} swell wave-induced stress (upward)


Note:

- 1. Wave-induced stresses can alter from the wind direction.
- 2. Swell-induced stress is upward (from waves to atmosphere)
- 3. Wave-induced stress can extend to a certain height.

The wind stress in the WBL:

$$au_{\mathrm{a}}(z) = au_{\mathrm{t}}(z) + au_{\mathrm{v}}(z) + au_{\mathrm{ww}}(z) + au_{\mathrm{sw}}(z),$$

At air-sea interface ($z \approx 0$), the shear-induced stress approaches to 0:, then

$$oldsymbol{ au}_{\mathrm{a}}(0) = oldsymbol{ au}_{\mathrm{v}}(0) + oldsymbol{ au}_{\mathrm{ww}}(0) + oldsymbol{ au}_{\mathrm{sw}}(0)$$

In the wave boundary layer (z > 0): $\tau_{ww}(z)$ decay faster and $\tau_v(z)$ approach 0, then

$$oldsymbol{ au}_{
m a}({\it z}) = oldsymbol{ au}_{
m t}({\it z}) + oldsymbol{ au}_{
m sw}({\it z})$$

The wind stress terms are estimated by:

$$egin{align} oldsymbol{ au_{
m v}}(0) &=
ho_a C_v |S_{10}| oldsymbol{S}_{10} \ oldsymbol{ au_{
m ww}}(0) &=
ho_w g \int_0^{2\pi} \int_0^\infty rac{\mathbf{k}}{\omega} S_{in} d\omega d\theta, \ oldsymbol{ au_{
m sw}}(0) &=
ho_w g \int_0^{2\pi} \int_0^\infty rac{\mathbf{k}}{\omega} S_{out} d\omega d\theta, \ oldsymbol{ au_t}(z) &= -
ho_a K_m rac{dS}{dz}, \ oldsymbol{ au_{
m sw}}(z) &= oldsymbol{ au_{
m sw}}(0) e^{-Ak_p z} \ \end{align*}$$

Note:

- 1. $\tau_{\rm v}(0)$, $\tau_{\rm t}(z)$ align with the mean wind direction.
- 2. The direction of $au_{\rm ww}(z)$ and $au_{\rm sw}(z)$ is determined by 2D wave spectrum.

In current models, the wind speed at 10 m,

$$S_{log}(z) = \frac{u_*}{\kappa} \left[ln \frac{z}{z_0} - \psi_m(z/L) \right].$$

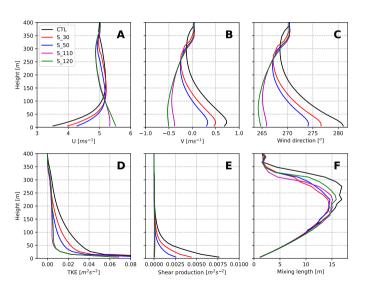
After considering the wave-induced stress:

$$U_{10} = S_{log}(10)cos(heta_{wind}) - S_{sw}(10)cos(heta_{sw})$$

$$V_{10} = S_{log}(10)sin(\theta_{wind}) - S_{sw}(10)sin(\theta_{sw}),$$

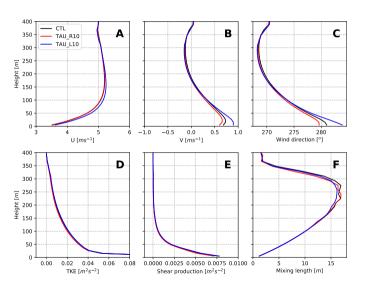
in which $\theta_{\textit{wind}}$ and $\theta_{\textit{sw}}$ are the wind direction and the direction of the swell-induced stress. and

$$\mathbf{S}_{sw}(z) = \frac{\tau_{sw}(0)}{\rho_a \kappa u_*} \int_{-\infty}^{z} e^{-Ak_p z} / z dz. \tag{1}$$

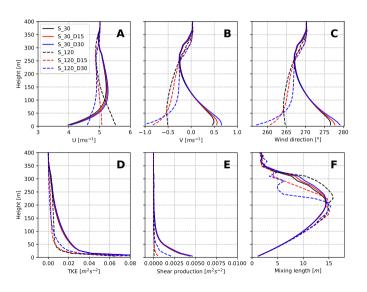

WRF-SCM simulations

Simulations using the single-column version of the Weather Research and Forecasting Model (WRF-SCM)

- MYNN-2.5 turbulence closure scheme
- 100 vertical layers in the bottom 6 km of the atmosphere.
- 5 m in the lowest model level and 16 layers are in the lowest 200 m
- The geostrophic wind is $U_g = 5 \text{ ms}^{-1}$ and $V_g = 0 \text{ ms}^{-1}$.
- The initial conditions of the wind and temperature are from the Large-Eddy simulation (ZN1) in Nilsson et al., 2012.
- The friction velocity is 0.11 ms^{-1} in all simulations.

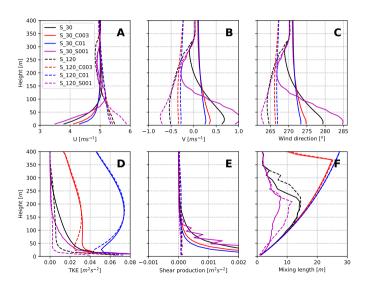

Impact of τ_{sw} :

- $\tau_{sw}(0)$ aligns with wind.
- xx in name $S_{-}xx$ represents $\tau_{sw}(0)/\tau_l$ τ_l is the downward momentum flux
- Neutral condition


Impact of the direction difference between τ_I and S_{10} :

- $\tau_{sw}(0) = 0$
- The direction difference between τ₁ and S₁₀ is 10° on the right and left in R₋10 and L₋10, respectively
- Neutral condition

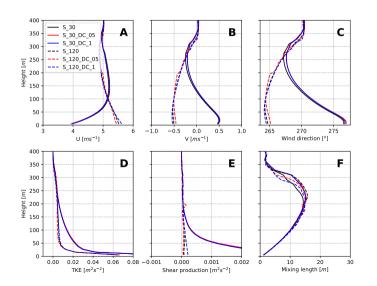
Impact of the direction difference between τ_{sw} and S_{10} :



xx and yy in the name $S_{-}xx_{-}Dyy$

- xx represent τ_{sw}/τ_{l}
- yy represent the direction difference between τ_{sw} and τ_{l}

Impact of the atmospheric stability:



xx and yy in the name $S_{-}xx_{-}Cyy$ or $S_{-}xx_{-}Syy$

- xx represent τ_{sw}/τ_{l}
- yy represent the heat flux in convective (C) or stable (S) conditions

Impact of the decay coefficient of swell-induced upward momentum flux:

xx and yy in the name $S_{-}xx_{-}DCyy$

- xx represent τ_{sw}/τ_{l}
- yy represent the decay coefficient A in

$$oldsymbol{ au}_{ ext{sw}}(z) = \ oldsymbol{ au}_{ ext{sw}}(0) e^{-Ak_{
ho}z}$$

One-month long simulations (Jan., 2017) are done over the ocean off California using an atmosphere-wave coupled model (UU-CM).

Control experiment:

$$au_{a}(0) =
ho_{a}C_{d}|m{S}_{10}|m{S}_{10}, \ z_{0} = lpha rac{u_{*}^{2}}{g} + rac{0.11 imes
u_{a}}{max(u_{*}, 0.05)}, \ lpha = rac{0.0095}{\sqrt{1 - au_{ww}(0)/ au_{l}}}. \ S_{log}(z) = rac{u_{*}}{\kappa} \left[lnrac{z}{z_{0}} - \psi_{m}(z/L)
ight].$$

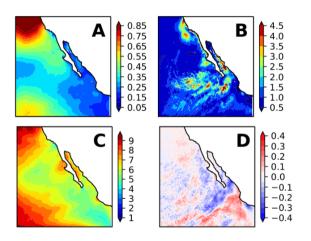
One-month long simulations (Jan., 2017) are done over the ocean off California using an atmosphere-wave coupled model (UU-CM).

Coupled experiment:

• At air-sea interface ($z \approx 0$)

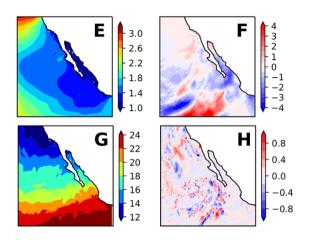
$$oldsymbol{ au}_{\mathrm{a}}(0) = oldsymbol{ au}_{\mathrm{v}}(0) + oldsymbol{ au}_{\mathrm{ww}}(0) + oldsymbol{ au}_{\mathrm{sw}}(0)$$

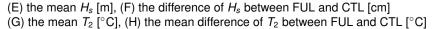
In the wave boundary layer (z > 0):

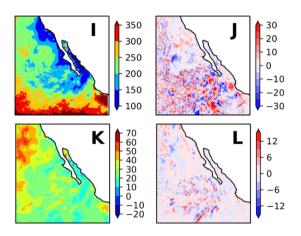

$$m{ au}_{
m a}({\it z}) = m{ au}_{
m t}({\it z}) + m{ au}_{
m sw}({\it z})$$

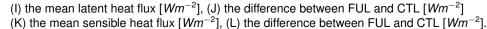
The wind speed at 10 m:

$$U_{10} = S_{log}(10)cos(\theta_{wind}) - S_{sw}(10)cos(\theta_{sw})$$


$$V_{10} = S_{log}(10) sin(\theta_{wind}) - S_{sw}(10) sin(\theta_{sw}),$$




(A): the mean τ_{sw} [×10⁻³Nm⁻²], (B) the ratio of the mean τ_{sw} and τ_l [%] (C) the mean S_{10} [ms⁻¹], (D) the difference of S_{10} between FUL and CTL [ms⁻¹]



Conclusions

- The swell-induced upward momentum flux increases the surface wind and changes the wind direction
- The misalignment between the upward momentum flux and wind has a more significant impact on the wind profile than that from the downward momentum flux
- The impact of swell-induced upward momentum flux decreases with atmospheric convection.
- The surface wind can be altered up to 5% by ocean surface gravity waves over the ocean off California.

