

Organic and inorganic bromine measurements around the extratropical tropopause and lowermost stratosphere

M. K. Rotermund¹, A. Engel², J.-U. Grooß³, P. Hoor⁴, M. Jesswein², F. Kluge¹, T. Schuck², B. Vogel³, T. Wagenhäuser², B. Weyland¹, A. Zahn⁵, and K. Pfeilsticker¹

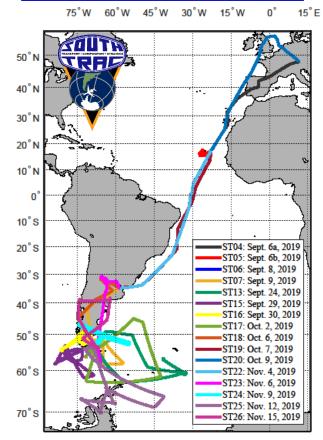
¹Institute of Environmental Physics, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany ²Institute for Atmospheric and Environmental Science, Goethe University Frankfurt, Frankfurt, Germany ³Institute of Energy and Climate Research - Stratosphere (IEK-7), Forschungszentrum Jülich, Jülich, Germany ⁴Institute for Atmospheric Physics, Johannes Gutenberg University Mainz, Mainz, Germany ⁵Institute for Meteorology and Climate Research, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

Contents


- Airborne WISE & SouthTRAC Campaign Measurements
- Br^{org}, Br^{inorg}, and Br^{tot} Budget in the UTLS
- Summary and Outlook

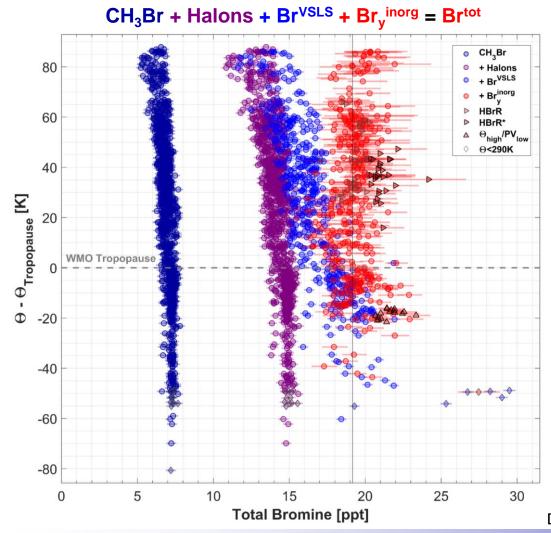
Airborne Measurements from HALO Aircraft

- HALO: High Altitude and LOng range research aircraft
- Flight altitudes up to ~15km: mainly along the upper troposphere and lower stratosphere (UTLS)
- Campaigns: WISE → Sept. & Oct. 2017 (Northern Hemisphere) and SouthTRAC → Sept. – Nov. 2019 (Southern Hemisphere)


Wave-driven ISentropic Exchange (WISE) 2017

[Adopted from: http://www.gulfstream.com/special-missions/recent-programs]

<u>Transport and Composition in the Southern</u> <u>Hemisphere UTLS (SouthTRAC) 2019</u>



Rotermund et al. https://doi.org/10.5194/egusphere-egu22-9685

Brtot as a Function of Potential Temperature Distance from the Tropopause: Northern Hemisphere WISE Campaign in Fall 2017

Key findings:

- ➤ Near constant Brtot throughout UTLS
- Lower stratospheric (Δθ>0 K)
 campaign average (black solid line):
 [Brtot] = 19.2 ± 1.2 ppt
- Individual regions of elevated bromine VMRs identified through air mass transport from bromine rich sources

Legend details:

HBrR: high bromine region


Θ_{high}/PV_{low}: high potential temperature and low

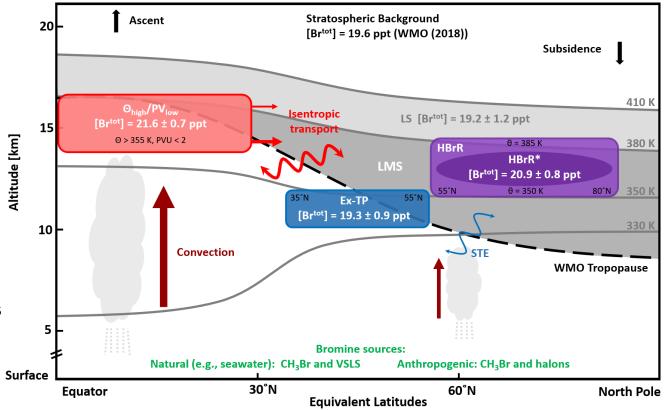
potential vorticity region

Θ<290 K: at/near ground measurements

<u>Latitudinal Distribution of Brorg, Bryinorg, Brtot and Air Mass Transport</u> <u>Tracers during WISE in Fall 2017</u>

Transport Pathways of Brtot during WISE in the NH during Fall 2017

In the lowermost stratosphere, a high bromine region (HBrR) is observed due to additional influx of tropospheric air masses compared to surrounding lower stratosphere

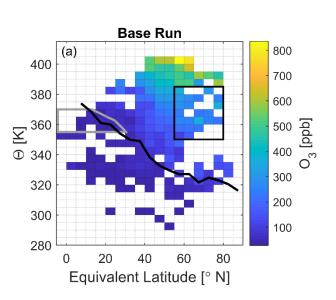

Main source: isentropic transport of bromine-rich air masses from south - eastern Asia.

■ 2nd smaller source: stratospheric–tropospheric exchange (STE) across the tropopause in mid-

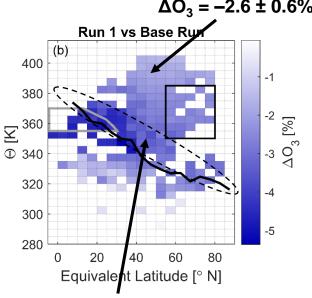
latitudes.

Former tropical upper tropospheric air masses (Ohigh/PVlow) with observed elevated bromine:

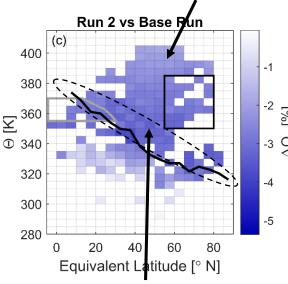
- From south eastern Asia via convection associated with the Asian monsoon anticyclone.
- From Central America transported by remnants of hurricanes Maria and Ophelia.



O₃ Loss due to Elevated Brtot in UTLS during WISE in Fall 2017


Run	Region	CH ₃ Br	Halons	$\mathrm{Br^{VSLS}}$	$\mathrm{Br_y^{inorg}}$	Br ^{tot}
Base	Ex-TP	$7.25\pm0.16~\mathrm{ppt}^{-1\mathrm{a}}$	7.80 ppt ²	3.06 ± 0.56 ppt $^{1\mathrm{b}}$	1.44 ± 0.53 ppt $^{1\mathrm{b}}$	$19.6 \pm 0.8~\mathrm{ppt}$
Run 1	TTL	$7.25\pm0.16~\mathrm{ppt}^{-1\mathrm{a}}$	7.80 ppt ²	3.12 ± 0.47 ppt 3	2.63 ± 1.04 ppt 4	$20.8 \pm 1.2~\mathrm{ppt}$
Run 2		$7.25\pm0.16~\mathrm{ppt}^{-1\mathrm{a}}$	$7.80~\mathrm{ppt}^{-2}$	5.00 ± 0.54 ppt $^{1\mathrm{c}}$	1.69 ± 0.54 ppt $^{1\mathrm{c}}$	$21.7 \pm 0.8~\mathrm{ppt}$

 $^{^{1}a}$ Current study all data at the TP: $\Delta\Theta$ =-10 K to WMO TP


TOMCAT Simulations:

LS: $\Delta\theta > 0$ K $\Delta O_3 = -2.6 \pm 0.6\%$

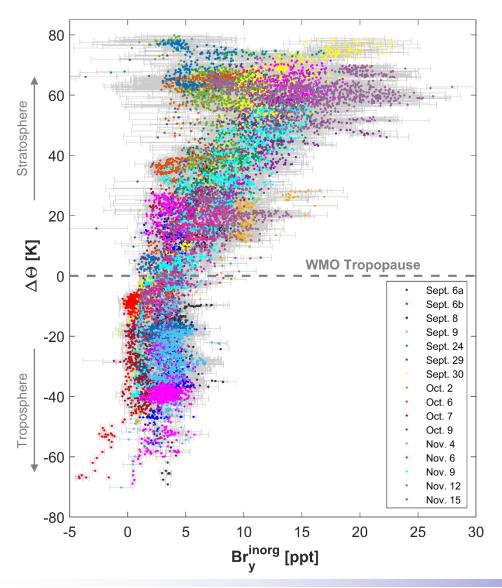
TP region: $\Delta\theta = 0-20 \text{ K}$ $\Delta O_3 = -3.2 \pm 0.6\%$ LS: $\Delta\theta > 0$ K $\Delta O_3 = -2.7 \pm 0.4\%$

TP region: $\Delta\theta = 0-20$ K $\Delta O_3 = -3.0 \pm 0.3\%$

 $^{^{1\}text{b}}$ Current study Ex-TP: eq. latitude from $40{-}60^{\circ}$ N, $\Delta\Theta{=}{-}10$ K to WMO TP

 $^{^{1}c}$ Current study tropical UT/TTL: eq. latitude from -5 to 30° N, $\Theta{=}355{-}380$ K

² from WMO (2018) and cited by Keber et al. (2020)

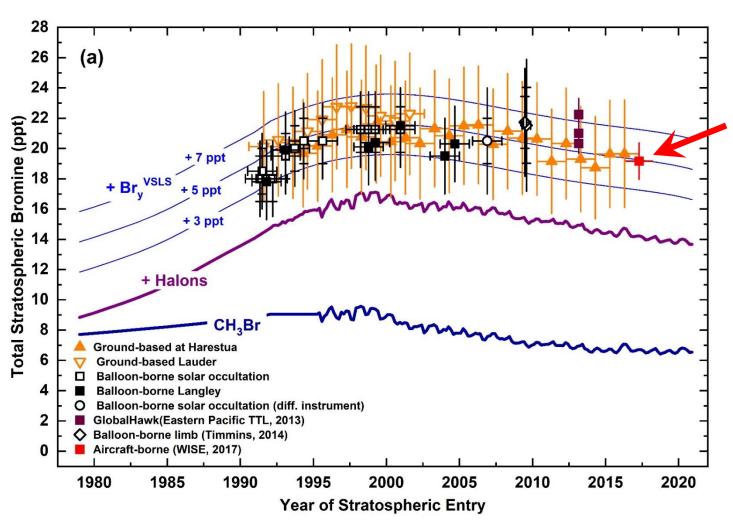

³ Navarro et al. (2015) average from East and West Pacific

⁴ Werner et al. (2017) and Koenig et al. (2017)

Sample SouthTRAC flight on Nov. 6, 2019: 70° W 60° W mini-DOAS remote sensing spectrometer preliminary analysis of BrO 30° S 30 25 O_3 [ppm] 20 35° S 6 15 10 2 5 40°S 0 0 CLaMS curtains Altitude [km] 12 [pbt] 45° S 9:59:55 8 15 10 50° S 0.6 Ratio of trace gas absorption within the 55° S 0.4 telescope line of sight 0.2with respect to the total absorption at all altitudes 60°s 0 $SCD_R \times 10^{-5}$ SCD [units] 0.9 Slant Column 0.5 0.6 Density 0.3 $\times 10^{13}$ **BrO dSCD** -0.5 $^{600}_{00}$ Elevated BrO VMRs observed (f) over the southern Argentina in BrO [ppt] 2 the stratosphere. 100 o Approx. 3ppt BrO (ie. Br_vinorg up to ~5ppt) observed 0 in the upper troposphere over northern Argentina: 16:00 17:00 19:00 20:00 21:00 18:00 slightly larger than during other upper tropospheric Time [UTC] flight sections (see next slide: pink data points **BrO** O_3 around $\Delta\Theta = -40$ K).

Southern Hemispheric preliminary Br_yinorg VMR:

SouthTRAC 2019



Ongoing work:

- Inferred Br_y^{inorg} measurements: from mini-DOAS remote sensing spectra → preliminary analysis of BrO along 16 SouthTRAC flights and scaled by BrO/Br_y^{inorg} partitioning from the CLaMS model
- General expected trend of low tropospheric Br_y^{inorg} and increasing VMRs into the stratosphere (+ΔΘ) are observed
- Elevated stratospheric Br_y^{inorg} around $\Delta\Theta = 60$ K is observed over the Antarctic Peninsula (flight Nov. 12th)
- Individual flight sections with elevated tropospheric Br_y^{inorg} (e.g. Sep. 8th, Nov. 4th and 6th) from tropical/subtropical regions need to be further investigated

<u>Updated Trend in Stratospheric Bromine</u> (to be included in 2022 WMO Ozone Assessment Report)

The WISE campaign lower stratospheric mean total bromine: [Brtot] = 19.2 ± 1.2 ppt

- Agrees well with previous stratospheric bromine data
- Smaller uncertainty!

Next: further update trend with SouthTRAC campaign (2019) data point.

Summary & Outlook

Completed:

Northern Hemisphere WISE 2017 campaign analysis for Br^{org}, Br^{inorg}, Br^{tot}, bromine transport pathways, source regions, and consequences on UTLS ozone

- Published in ACP: Rotermund et al., (2021) https://doi.org/10.5194/acp-21-15375-2021
- > To be included in 2022 WMO Ozone Assessment Report

Ongoing:

Southern Hemisphere SouthTRAC 2019 campaign preliminary retrievals of Br_y inorg, Br^{org} and Br^{tot} for 16 flights

Outlook:

Finalizing SouthTRAC Brtot analysis and interpretation of bromine rich air mass transport using CLaMS transport model

Thank you!

EGU22-9685:

Rotermund et al.

https://doi.org/10.5194/egusphere-egu22-9685

