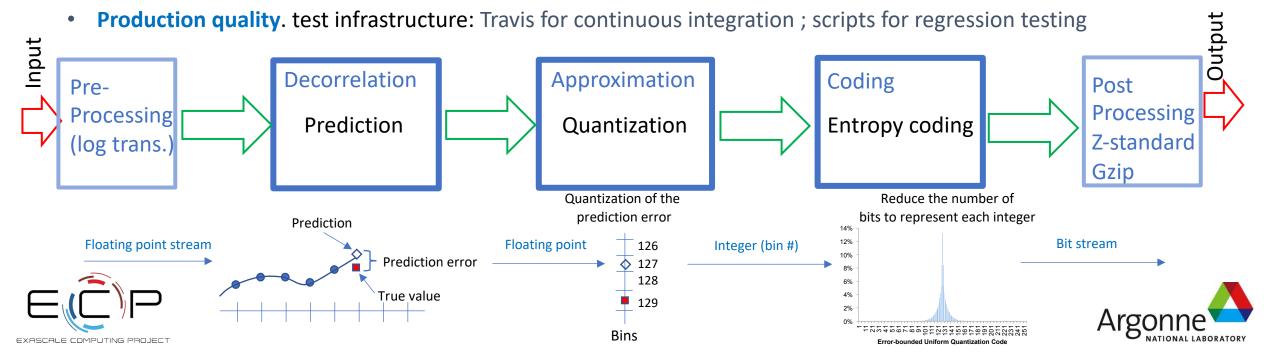
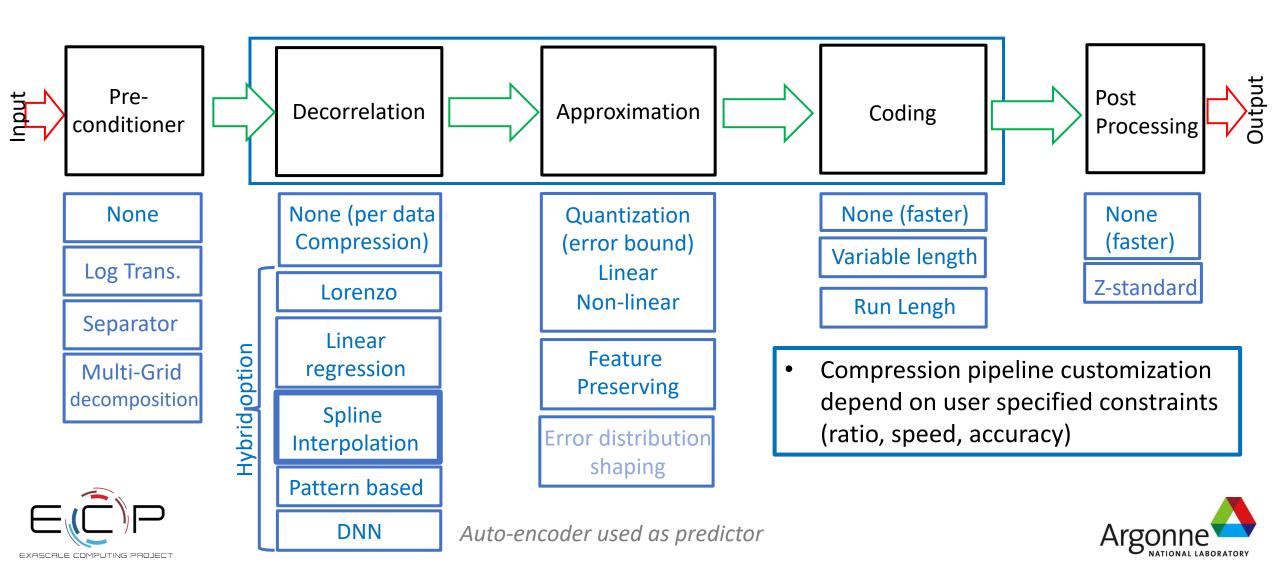
Improving lossy compression for climate datasets with SZ3

Franck Cappello, Sheng Di, Robert Underwood

Argonne National Laboratory

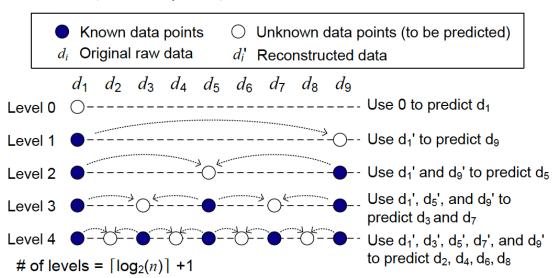

https://szcompressor.org


SZ lossy compression framework

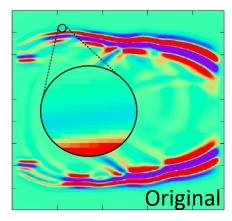
- Error bounded: Provides different error controls (Absolute, relative, value range error bounds, PSNR)
- Multi-stages, Multi-strategies (temporal, spatial), Multi-algorithms
- Prediction based lossy compressor (differs from transform based lossy compressors)
- Compress/decompress by blocks for nearly random-access decompression
- Can compress 1D, 2D, 3D datasets. and unstructured datasets as 1D
- Multiple // implementations: CPU Core (Vector Instructions), Multi-core (OpenMP), GPU (Cuda, Kokkos, HIP*, DPC++*), FPGA (proto)
- Integrated into the main I/O libraries: HDF5, ADIOS and PnetCDF

SZ3 Customization

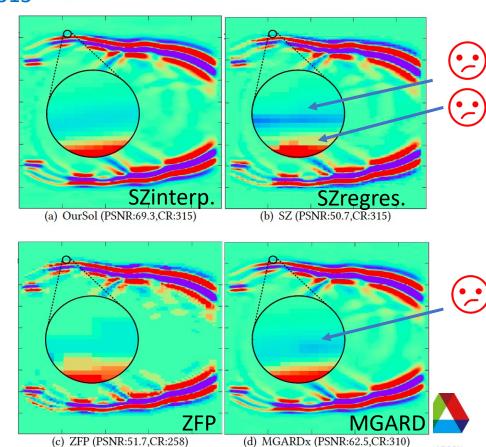
Custom versions of SZ are built from modules



SZ3 Spline interpolation Predict.

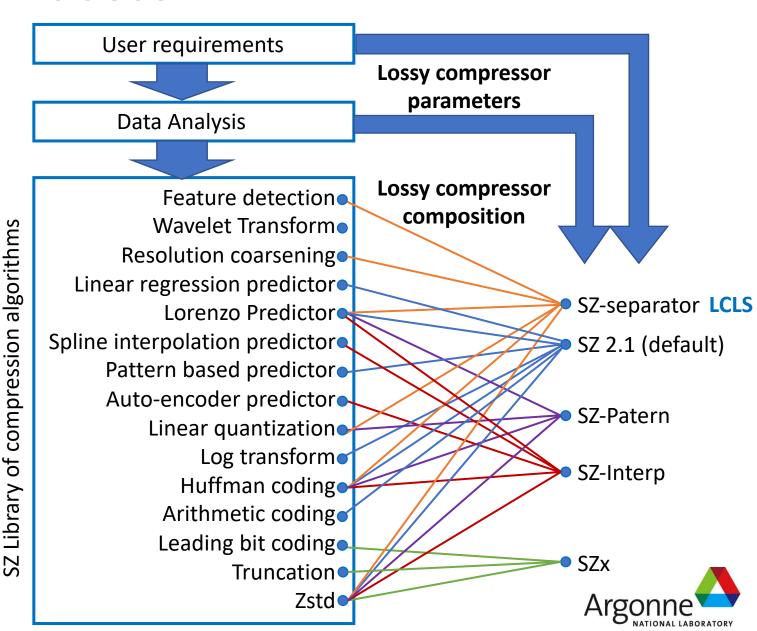

Predictor based on multilevel, multidimensional tri-cubic spline interpolation

Spline method	Prediction Value p_i	
Linear spline	$p_i = \frac{1}{2}d_{i-1} + \frac{1}{2}d_{i+1}$	
Cubic spline	$p_i = -\frac{1}{16}d_{i-3} + \frac{9}{16}d_{i-1} + \frac{9}{16}d_{i+1} - \frac{1}{16}d_{i+3}$	


1D case (linear spline):

At level 0, 0 to predict d1, \rightarrow Store quantized error (e0) At level 1, d1+e0 to predict d9, \rightarrow Store quantized error (e9) At level 2, d1+e0 and d9+e9 to predict d5, \rightarrow Store error (e5)

CR:~315 Figure 25: Visualization of RTM, original data


SZ3: Customization Process

SZ 3 library of algorithms for lossy compression and examples of SZ compressors built from the library of algorithms.

To compose and tune a compression pipeline we analyze the data to compress and user requirements in compression speed, ratio and

SZ3 use-cases

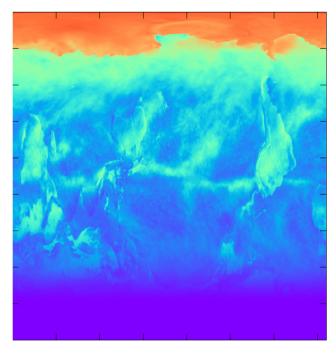
We are seeing an increasing diversity/number of use-cases

"Classic" use-cases:

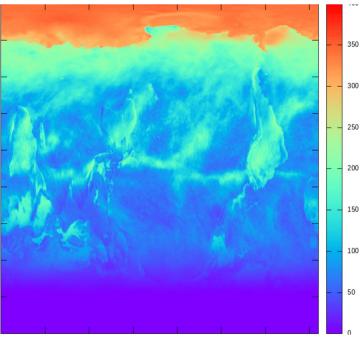
- 1) Visualization
- 2) Reducing storage footprint (on-line, in situ compression)
- 3) Reducing I/O time (on-line, in-situ compression)

Recently identified use-cases:

- 4) Reducing streaming intensity (recent for generic floating-point compressors)
- 5) Lossy checkpoint/restart from lossy state
 - reduce checkpoints footprint on storage adjoint, accelerate checkpointing
- 6) Re-computation Avoiding by reducing the memory footprint \rightarrow GAMESS


SZ3 on Climate Data

SZ can reach high compression ratios on the Atmosphere and Ocean datasets while maintaining quality metrics documented by Pinard et al (2020):


- Structural Similarity Image Metric (DSSIM): >.995
- Spatial Relative Error (SRE): <5% at REL=1e-4
- Pearson's Coefficient of Determination (R²): >.99999
- P-value of the Kolmogorov-Smirnov test:>.05

Values accurate to machine precision

Future work is still needed to improve performance on the Ice and Land datasets which have many small buffers

Original, CESM/ATM/ FSUTOA
Upwelling solar flux at top of atmosphere

SZ3 compressed (interp predictor): 93x smaller (without KS test) 21x smaller (with KS test)

Discussion: (statistician comment: KS test is too sensitive to sample size and not sensitive enough to outliers. Other tests e.g. Anderson-Darling might be better).

SZ3 Performance WRT Pinard et al. Requirements

Largest Compression Ratio For Each Compressor that Satisfies Each Pinard et al (2020) Requirements

Structural SimilarityImage Metric (DSSIM):>.995

Spatial Relative Error (SRE): <5% at REL=1e-4

 Pearson's Coefficient of Determination (R²):
 >.99999

Compressors	Pearson R ²	Spatial Relative Error	dSSIM
SZ	30.65	31.49	39.86
SZ_Interp	93	93	59.81
ZFP	13.27	13.27	18.87
MGARD	27.1	4.69	Х
MGARDx	14.7	6.49	X
TThresh	16.1	16.1	2.98
BitGrooming	1.51	1.51	1.51
Digit Rounding	1.86	1.86	1.86
FPZip	1.95	1.95	1.95
NDZip	1.64	1.64	1.64
Zstd	1.35	1.35	1.35

All together: R², SRE, dSSIM

→ CR~59.81

SZ3 Contributors

Core-group (SZ team)

(Lead) Argonne National Laboratory

Franck Cappello, Sheng Di, Robert Underwood, Julie Bessac, Xiaodong Yu

Washington State University

<u>Dingwen Tao</u>, <u>Jiannan Tian</u>, <u>Sian Jin</u>, <u>Chengming Zhang</u>

University of California, Riverside

Kai Zhao, Jinyang Liu

Clemson University

Jon Calhoun, Griffin Dube

Missouri University of Science and Technology

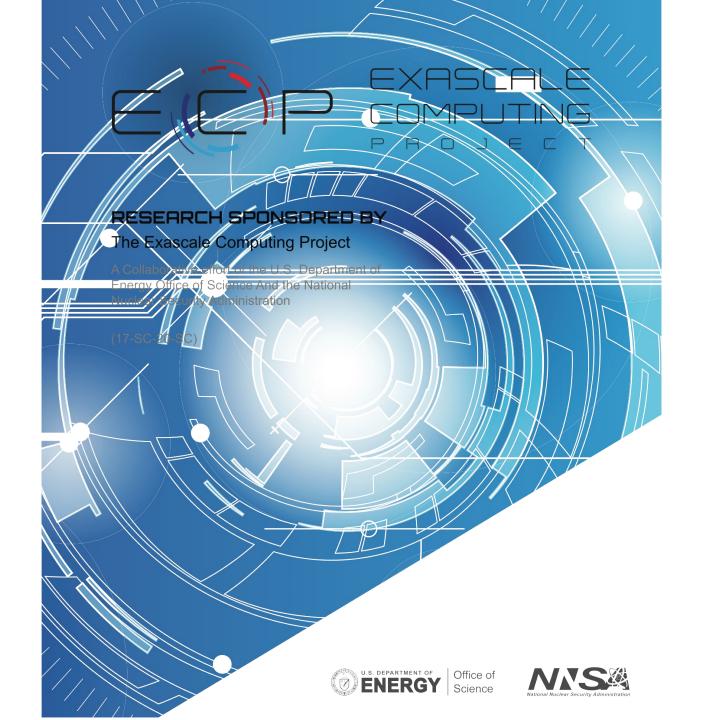
Xin Liang

University of Alabama

Cody Rivera

Alumni

Ali Murat Gok, Dr. Sihuan Li



Thanks

This research was supported by the Exascale Computing Project (17-SC-20-SC), a joint project of the U.S. Department of Energy's Office of Science and National Nuclear Security Administration, responsible for delivering a capable exascale ecosystem, including software, applications, and hardware technology, to support the nation's exascale computing imperative.

