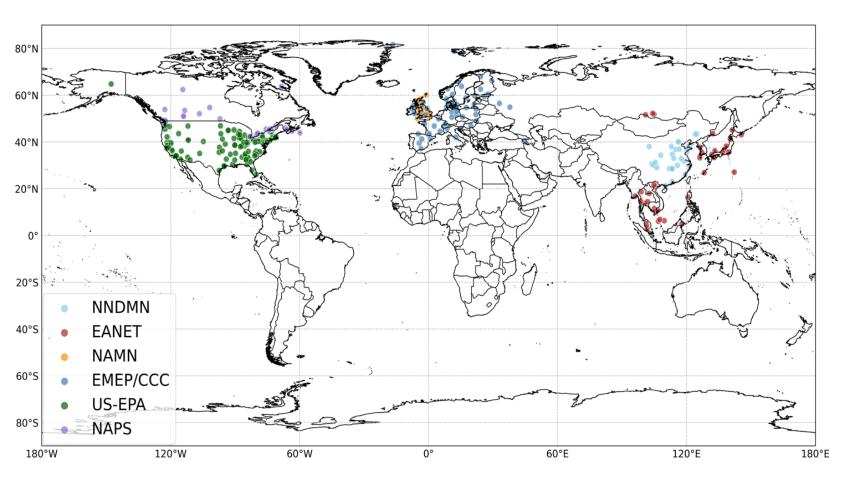
A new assessment of global and regional budgets, fluxes and lifetimes of atmospheric reactive N and S gases and aerosols

Yao Ge

PhD candidate

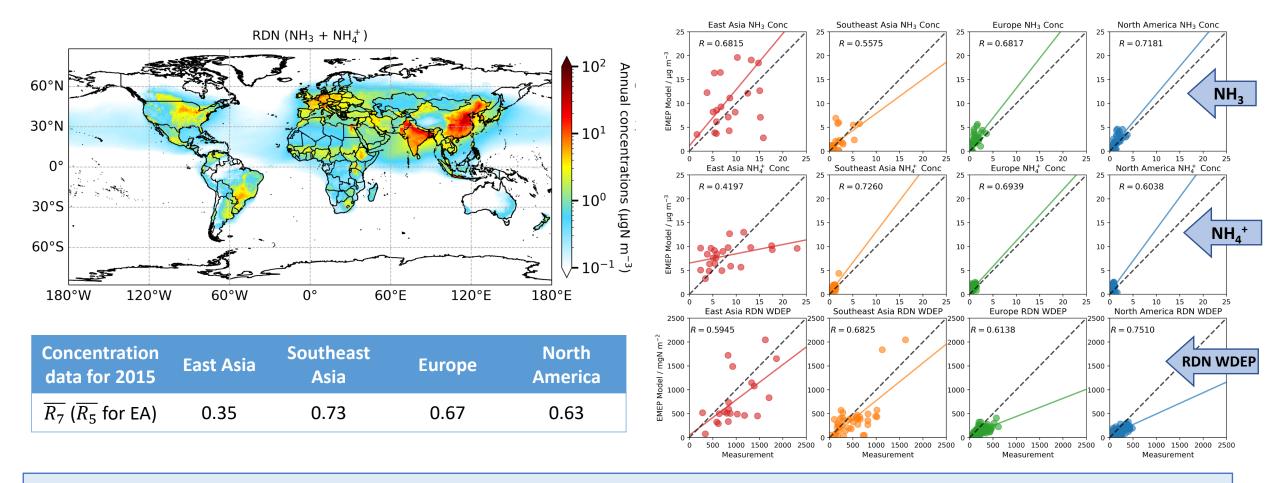
University of Edinburgh & UKCEH

Coauthors: Mathew Heal, Massimo Vieno, David Stevenson, Peter Wind


Motivation

- Reactive N_r and S_r species (e.g., NH₃, NH₄⁺; NO₂, NO₃⁻; SO₂, SO₄²-) have significant impact on human health, ecosystems and climate.
- Impacts and their mitigation are influenced by the particular chemical forms of N_r and S_r concentrations and deposition.
- Knowledge of regional variations in N_r and S_r constituents and budgets is important for implementing emissions controls in line with local conditions.

Introduction Model evaluation $N_r \& S_r$ assessment Conclusions


Model configuration

- EMEP MSC-W model WRF model.
- Grid resolution: 1° × 1°.
- Emission inventory: HTAP(2010) and ECLIPSE(2010, 2015).
- N_r and S_r: NH₃, NH₄⁺, NO₂, HNO₃, NO₃⁻, SO₂, SO₄²⁻, etc.
- Compared against 10 surface measurement networks.

Introduction Model evaluation $N_r \& S_r$ assessment Conclusions

Model-Measurement comparison (Ge et al., GMD, 2021)

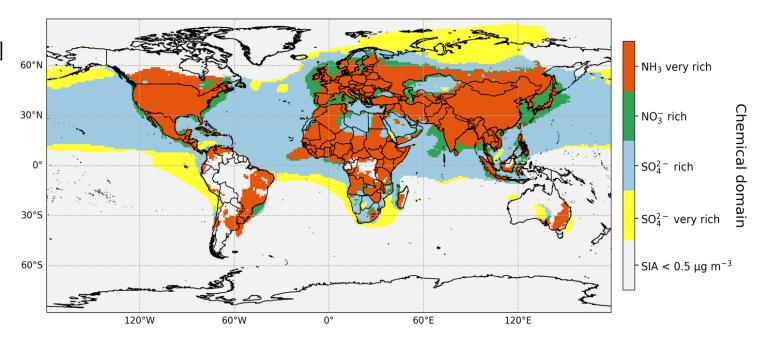
- > EMEP model captures regional spatial variations well
- Regional variation in model—measurement bias suggests shortcomings in regional emissions and/or measurements

Global chemical domains for SIA formation (Ge et al., ACPD, 2022)

•
$$T_A = [NH_3] + [NH_4^+];$$
 $T_{A-free} = T_A - 2 \times T_S$

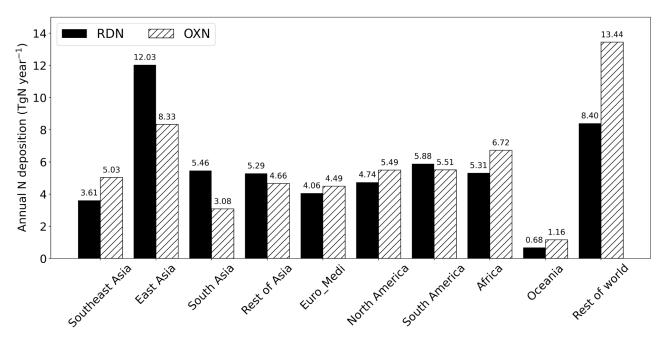
•
$$T_S = [SO_4^{2-}];$$
 $T_{N-f} = [HNO_3] + [NO_3^-f]$

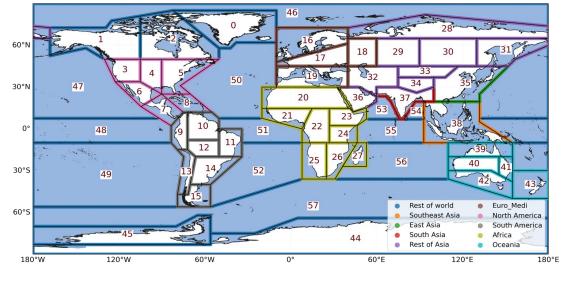
• (a): Wherever $\frac{T_A}{T_S} > 2$: all sulphate is fully neutralised.

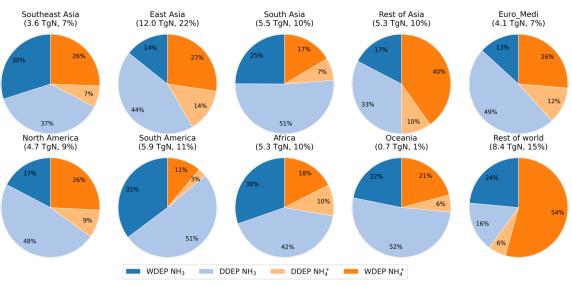

Wherever
$$1 < \frac{T_A}{T_S} < 2 : SO_4^{2-}$$
 rich.

Wherever $\frac{T_A}{T_S} < 1 : SO_4^{2-}$ very rich.

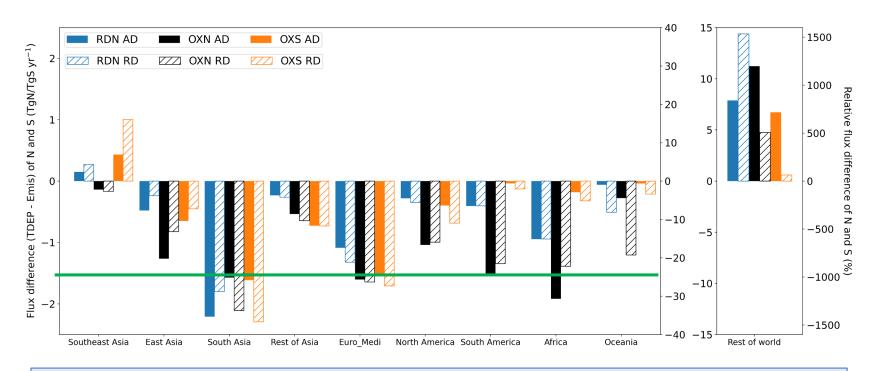
• **(b):** Wherever $0 < \frac{T_{A-free}}{T_{N-f}} < 1 : NO_3^-$ rich.


Wherever
$$\frac{T_{A-free}}{T_{N-f}} > 1$$
: NH₃ very rich.


T_{A-free}/T_{N-f}	Mean
Southeast Asia	1.9
East Asia	3.0
South Asia	9.6
Rest of Asia	4.1
Euro_Medi	2.5
North America	3.1


- ➤ South Asia is most NH₃ rich, while Europe and Southeast Asia are least NH₃ rich
- ➤ Reducing NH₃ will have variable but small impacts on SIA mitigation

Assessment of N_r and S_r deposition (Ge et al., ACPD, 2022)



- > RDN is a major fraction of total N deposition
- ➤ Dry deposition of NH₃ is the largest contributor to RDN deposition in most continental regions
- ➤ Reducing NH₃ is efficient for reducing total N deposition

Assessment of regional budgets & lifetimes (Ge et al., ACPD, 2022)

- \triangleright East Asia is largely responsible for its own N_r and S_r pollution
- ➤ Regional lifetimes of RDN, OXN, and OXS vary by a factor of ~4: shortest in Southeast Asia, East Asia, South America

τ (days)	RDN	OXN
Southeast Asia	2.6	3.1
East Asia	3.0	4.5
South Asia	4.3	5.6
Rest of Asia	7.3	12
Euro_Medi	4.6	6.6
North America	3.6	5.0
South America	1.9	4.6
Africa	6.4	8.5
Oceania	3.2	8.4
Rest of world	10	12

Thank you for your attention

Ge et al., GMD, 2021: https://doi.org/10.5194/gmd-14-7021-2021

Ge et al., ACPD, 2022: https://doi.org/10.5194/acp-2022-82

- ➤ Model—measurement agreement varies between different networks: Greater correlation and lower bias in Southeast Asia, Europe and North America than in East Asia suggests regional shortcomings in emissions and/or measurements.
- ➤ Geographically-different 'ammonia richness': South Asia is the most NH₃ rich, while Europe and Southeast Asia are the least NH₃ rich. Reducing NH₃ has small impacts on mitigating continental SIA.
- $ightharpoonup N_r$ deposition: NH₃ dry deposition is dominant (~50%) in continental regions, while NH₄⁺ wet deposition is dominant in Rest of world (54%). Reducing NH₃ is therefore efficient for reducing total N deposition.
- ➤ Regional lifetimes: Lifetimes of RDN, OXN, and OXS species vary by a factor of ~4 (e.g., OXN lifetime is 3.1 and 12 days in Southeast Asia and Rest of Asia respectively).

Introduction Model evaluation $N_r \& S_r$ assessment Conclusions