

Daylight Promotes a Transient Uptake of SO₂ by Icelandic Volcanic Dust

J. Lasne^{1,*}, D. Urupina¹, E.C. Maters², P. Delmelle³, P. Dagsson-Waldhauserova⁴, M.N. Romanias¹, F. Thevenet¹

¹CERI EE, IMT Nord Europe, Univ. Lille, France

* jerome.lasne@imt-nord-europe.fr

²Department of Chemistry, University of

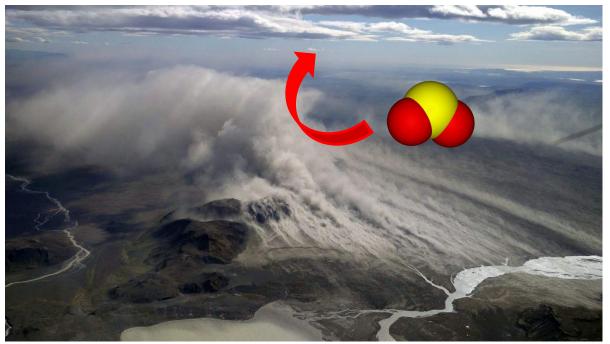
Cambridge, UK

³Earth & Life Institute, Université Catholique de Louvain, Belgium

⁴ Agricultural University of Iceland, Iceland

Volcanic Dust in the Atmosphere

- Volcanic ash is emitted with gases during explosive eruptions
- Ash emissions = 176-256 Tg/yr, i.e., 5%-7.5% of total primary aerosol emission. They can increase to 90% of aerosol emissions when a large eruption occurs^{1,2}
- Ash settles on the ground, and may be later remobilized by winds; it is then called "dust"



Eruption of Eyjafjallajökull Volcano, Iceland, 7th of May 2010 © NASA GSFC, MODIS Rapid Response Team

¹ Andreae, in World Survey in Climatology **16**, 341 (1995)

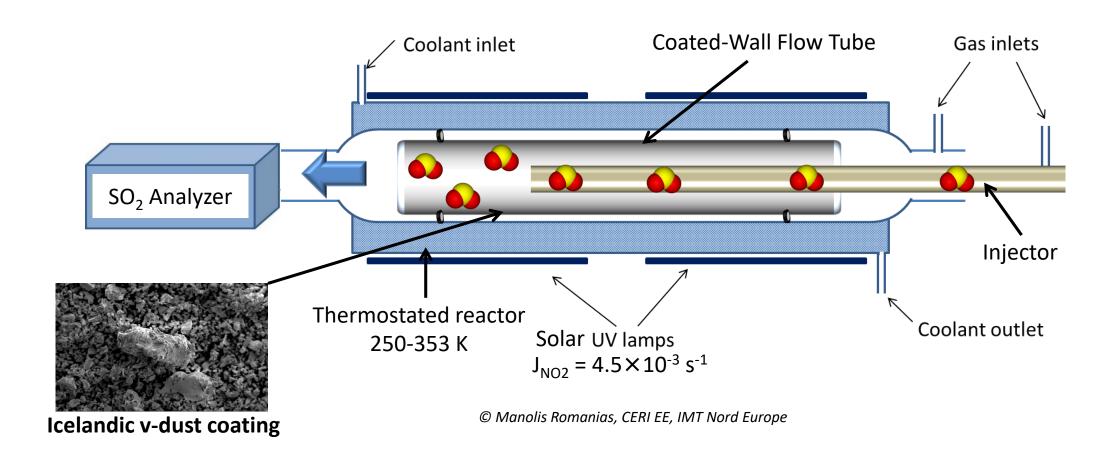
² Durant et al., Elements **6**, 235 (2010)

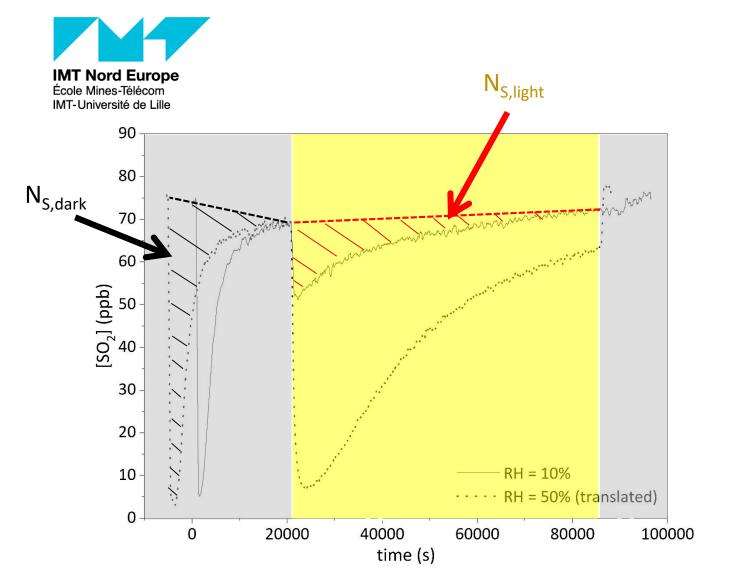
Remobilized volcanic dust during a storm in Iceland
Source: https://icelandmag.is/article/huge-dust-storm-swept-across-area-around-langjokull-glacier-west-iceland

Interaction of SO₂ with Volcanic Dust

- Icelandic volcanic dust (v-dust) remobilized by winds: 30-40 Tg/yr³
- Average [SO₂] in the plume of Eyjafjallajökull (Iceland) during the 2010 eruption = 40 ppb ⁴
- Models show that SO₂ heterogeneous uptake by v-dust dominates reaction with OH to dictate SO₂ atmospheric lifetime⁴; 43% more SO₂ is removed when heterogeneous chemistry is included⁵
- V-dust contains Fe- and Ti-oxides that may be photoactivated. How does solar UV light impact the heterogeneous uptake of SO₂?

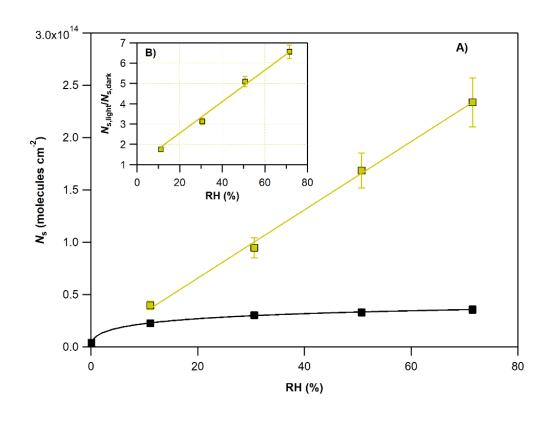
3


³ Arnalds et al., Aeolian Res. **20**, 176 (2016)


⁴ Heue et al., Atmos. Chem. Phys. 11, 2973 (2011)

⁵ Zhu *et al., Nat. Commun.* **11**, 4526 (2020)

Coated-Wall Flow Tube Reactor



SO₂ Uptake by V-dust

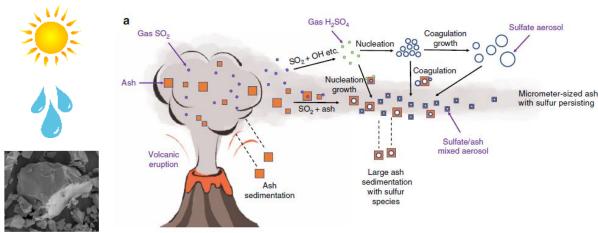
- Mýrdalssandur v-dust
 [SO₂] = 75 ppb, T = 296 K
- Addition of UV light $(J_{NO2} = 4.5 \times 10^{-3} \text{ s}^{-1})$ triggers a new transient uptake of SO_2
- Relative humidity (RH) has an impact on N_s, especially under UV

SO₂ Uptake by V-dust: Effect of Relative Humidity (RH)

- $N_{S,dark}$ increases with RH in a Langmuir-like fashion. Saturation about RH = 30%, corresponding to the formation of the H_2O monolayer on volcanic ash⁶
 - ⁶ Joshi et al., Aeolian Research 27, 35 (2017)
- $N_{S,light}$ ($J_{NO2} = 4.5 \times 10^{-3} \text{ s}^{-1}$) increases linearly with RH, and so does the amplification of N_S by solar UV light, $N_{S,light}/N_{S,dark}$

Environmental Science: Atmospheres

6



Global Parametrization of N_S Enhancement by Solar UV Light

• We have established the dependence of $N_{S,light}/N_{S,dark}$ on: RH, J_{NO2} , [Ti]/[Si]. An empirical relationship has been determined⁷:

$$N_{s,light}/N_{s,dark} = 6.1 \times [(1 + 7.76 \times 10^{-2} \times (\%RH)] \times (1 + 480.5 \times J_{NO2}) \times ([Ti]/[Si])$$

• This equation can be implemented in chemical models⁸ of the atmosphere

⁷ Lasne et al., Environ. Sci.: Atmos., Advance article (2022)

⁸ and Illustration: Zhu et al., Nat. Commun. 11, 4526 (2020)

7

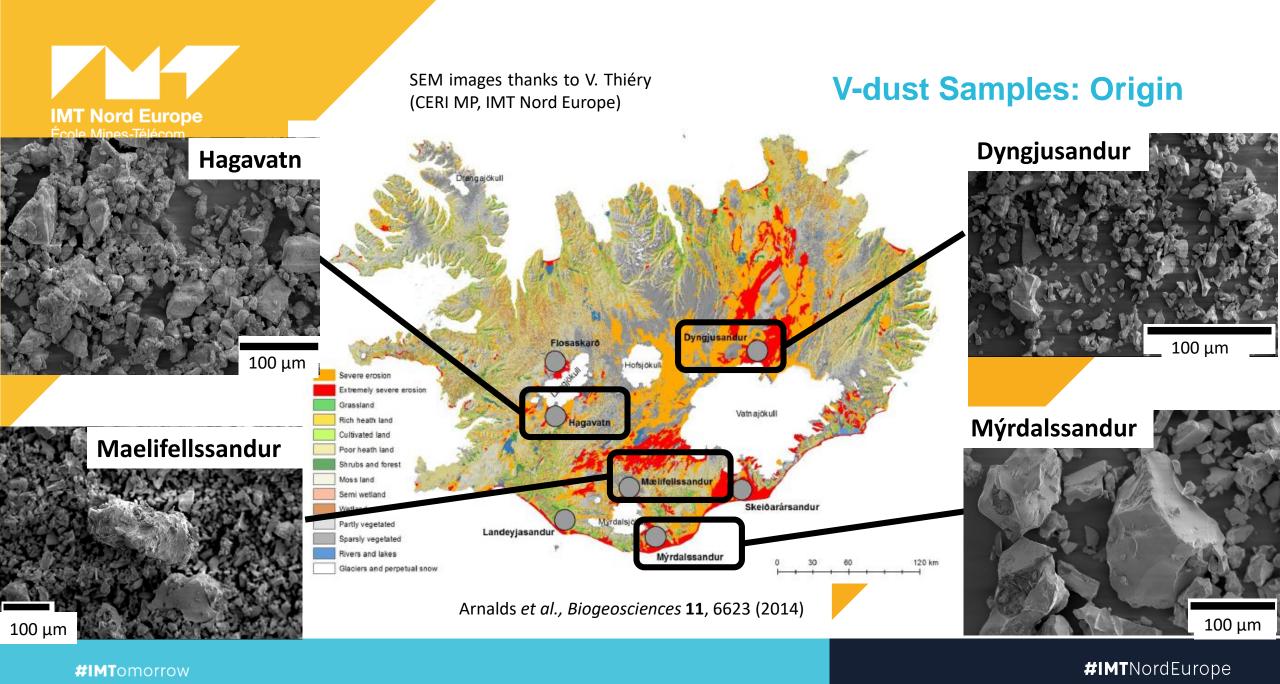
• We have quantified the uptake of SO₂ by natural Icelandic v-dust under realistic atmospheric conditions

• SO₂ uptake is efficiently promoted by solar UV light and relative humidity; the UV-promoted process is transient

• Models show the efficiency of heterogeneous processes on the removal of SO₂ from the atmosphere. This new data, and the empirical parametrization, show that these processes are much stronger under solar UV irradiation, and could decrease even more SO₂ lifetime, and the sulfur burden in the atmosphere

Thank you for your attention!

Funding



Backup

Volcanic Dust Samples: Origin

• Hagavatn:

- Severe erosion region
- Small area (10 km²)
- Receding glacier and glacial lake with fluctuating water levels
- More crystalline materials
- Maelifellssandur:

Extremely severe erosion region
Medium size area (40 km²)
Glacio-fluvial highland plain with fluctuating glacial waters
Frequent dust storms

Arnalds et al., Aeolian Research 20, 176 (2016)

• **Dyngjusandur**:

Extremely severe erosion region
Large area (140 km²)
Glacio-fluvial plain flooded in summer
Presence of sediments
Frequent dust storms

Mýrdalssandur:

Extremely severe erosion region
Medium size area (60 km²)
Glacio-fluvial lowland with fluctuating water levels
Presence of sediments
Frequent dust storms

Volcanic Dust Samples: Surface Composition

XPS Analysis of Icelandic Volcanic Dusts

Surface Composition (at.%)	Hagavatn	Maelifellssandur	Dyngjusandur	Mýrdalssandur
Si	45.0	49.8	53.9	53.1
Al	35.8	22.3	19.9	17.6
Fe	5.7	13.0	9.1	11.7
Ca	6.9	5.2	7.7	6.6
Na	1.9	1.9	1.4	3.3
Mg	3.1	4.1	6.4	4.4
Ti	1.1	3.0	1.4	2.6
K	< 0.1	0.4	< 0.1	0.7
Mn	0.1	0.4	0.3	< 0.1

Volcanic Dust Samples: Specific Surface Area

BET Specific Surface Area of Icelandic Volcanic Dusts

	Hagavatn	Maelifellssandur	Dyngjusandur	Mýrdalssandur
S _{BET} (m ² g ⁻¹)	4.5 ± 1.1	8.2 ± 2.0	7.0 ± 1.8	1.5 ± 0.38

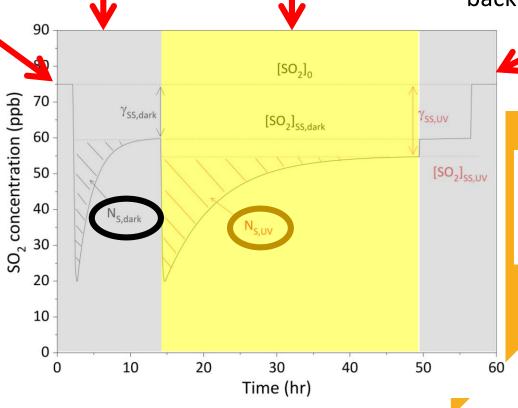
1) $[SO_2]_0$ is set in the reactor; is dust not exposed yet

stable 2) Dust is exposed to 3) UV lamps SO₂ until a steady- are turned on; state ([SO₂]_{SS,dark}) is a new steadyreached

state [SO₂]_{SS.UV} is reached

Experimental Method

4) The UV lamps are turned off, and the injector is pushed back in to go back to the initial level, $[SO_2]_0$


$$k_{obs} = \frac{\mathbf{v} \times \ln(^{[SO_2]_0} /_{[SO_2]_{SS,dark}})}{L_{coating}}$$

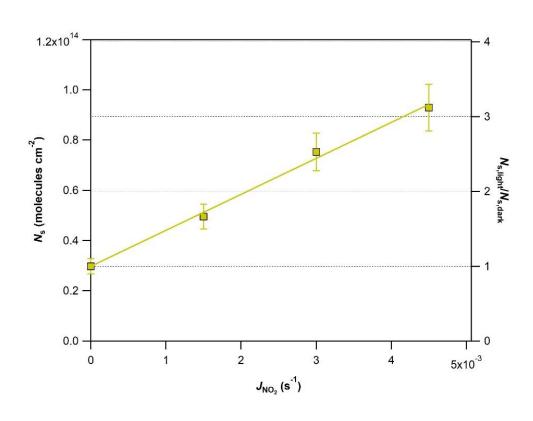
Correction for SO₂ diffusion

$$k_{kin} = \frac{k_{obs}}{1 - \alpha P k_{obs}}$$

Steady-state uptake coefficient

$$\gamma_{SS} = \frac{4k_{kin}V}{cS}$$

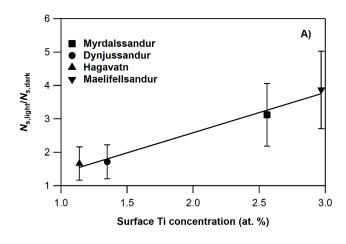
We have access to the number of SO₂ molecules taken up by dust, $N_{S,dark}$ and $N_{S,light}$

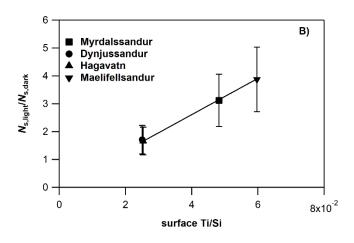

Volcanic Dust Samples: Specific Surface Area

Number of SO_2 Molecules Taken Up by Icelandic Volcanic Dusts $[SO_2] = 75$ ppb, T = 296 K, RH = 30%

	Hagavatn	Maelifellssandur	Dyngjusandur	Mýrdalssandur
$N_{S,dark}$ (10 13 molecules cm $^{-2}$)	1.2 ± 0.4	0.96 ± 0.29	2.1 ± 0.6	2.5 ± 0.8
N _{S,light} (10 ¹³ molecules cm ⁻²)	2.0 ± 0.6	3.7 ± 1.1	3.6 ± 1.0	7.8 ± 2.5
$N_{S,light} / N_{S,dark}$	1.7	3.8	1.7	3.1

SO₂ Uptake by V-dust: Effect of Light Flux



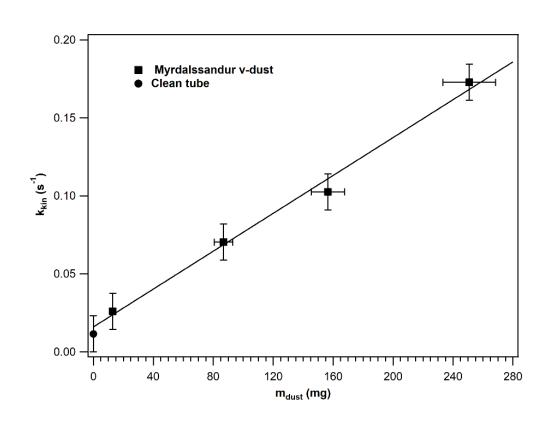

- UV light irradiating dust is characterized by J_{NO2} , the photolysis rate of NO_2 (in s⁻¹) in the setup (typical atmospheric values = $10^{-3} 10^{-2}$ s⁻¹)
- N_S and $N_{S,light}/N_{S,dark}$ increase linearly with J_{NO2} at RH = 30%

Photocatalysis (activation of the surface by UV photons), or photochemistry (alteration of SO₂ by UV photons)?

SO₂ Uptake by V-dust: Correlation with Surface Composition

- Surface elemental composition (in at.%) measured by XPS
- $N_{S,light}/N_{S,dark}$ for $J_{NO2} = 4.5 \times 10^{-3}$ s⁻¹, RH = 30% increases linearly with surface [Ti], and with surface [Ti]/[Si]
- Proportionality of N_{S,light}/N_{S,dark} with surface Ti content suggests photocatalysis, but photochemistry cannot be ruled out!

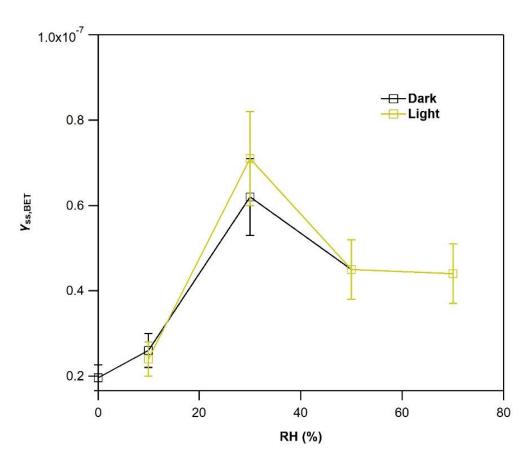
18


Volcanic Dust Samples: Specific Surface Area

BET Steady-State Uptake Coefficients of SO_2 by Icelandic Volcanic Dusts $[SO_2] = 75$ ppb, T = 296 K, RH = 30%

	Hagavatn	Maelifellssandur	Dyngjusandur	Mýrdalssandur
Υ _{SS,BET,dark} (10 ⁻⁸)	0.66 ± 0.26	3.2 ± 1.3	1.6 ± 0.6	6.2 ± 2.5
Υ _{SS,BET,light} (10 ⁻⁸)	2.6 ± 1.0	6.6 ± 2.7	7.3 ± 2.9	7.1 ± 2.9
$\gamma_{\rm SS,BET,light} / \gamma_{\rm SS,BET,dark}$	3.9	2.0	4.6	1.1

SO₂ Uptake by V-dust: Steady-State Uptakes



Linear increase of SO₂ uptake with v-dust mass

 No saturation → all the dust is exposed to SO₂ in the mass range < 250 mg

SO₂ Uptake by V-dust: Steady-State Uptakes

$$\gamma_{ss,BET} = \gamma_{ss,geom} \times \frac{S_{geom}}{S_{BET}}$$

- SO_2 uptake increases up to RH = 30%, then decreases and plateaus at 50%; this behaviour could be linked to the formation of the H_2O ML 6
- Steady-state uptakes of SO₂ by Mýrdalssandur v-dust are, within error, similar in the dark and under UV-irradiation; UV-irradiation does not produce any detectable quantitative modification of the steady-state

⁶ Joshi et al., Aeolian Research 27, 35 (2017)