

The impact of resolution on the air-sea interaction in the Agulhas current region

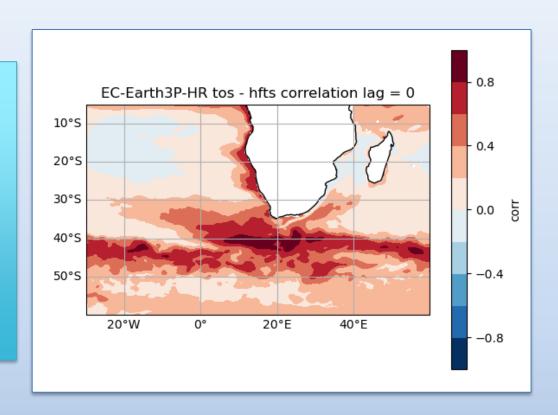
- J. Busatto^{1,2}, Y. Chunxue², A. Bellucci³ and C. Adduce^{1,2}
- 1. Department of Engineering, Roma Tre University, Rome, Lazio
- 2. ISMAR Institute, National Research Council, Rome, Italy
- 3. Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici, Bologna, Italy.

Ocean is not a passive element, affected by the variable atmospheric system: it acts as a memory for the coupled air-sea system, allowing positive feedback in the air sea interactions.

$$\begin{split} \frac{dT_a}{dt} &= \alpha (T_o - T_a) - \gamma_a T_a + N_a, \\ \frac{dT_o}{dt} &= \beta (T_a - T_o) - \gamma_o T_o + N_o, \end{split}$$

Bishop, S. P., Small, R. J., Bryan, F. O., & Tomas, R. A. (2017)

Two regimes can be recognised:


- Atmosphere-driven regime: high frequency variating atmospheric quantities drive changes in oceanic properties, such as SST (tos).
- Ocean-driven regime: ocean dynamics intrinsically causes variation in the atmospheric system, such as heat fluxes (hfts).

Why the Agulhas System

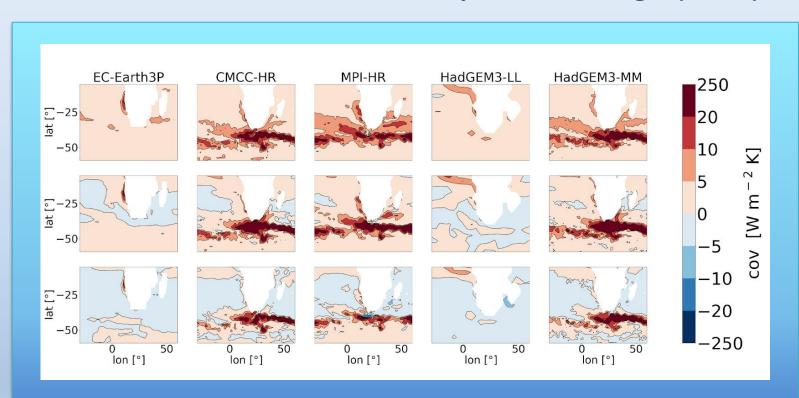
Agulhas Current is the WBC that flows along the South-Eastern coasts of the African continent carrying warm waters poleward.

It has a strong impact on the heat and salt **feedback processes** between *Indian* and *Atlantic* Ocean.

Agulhas System is characterized by **turbulence** and non - linearity effects caused by *bathymetry influence, meandering events,*Southern Hemisphere Westerlies, Kelvin waves etc.

<u>Datasets:</u> Numerical results belong to the "hist-1950" experiment in the CMIP6 environment. Observations are from JOFURO and OAFlux

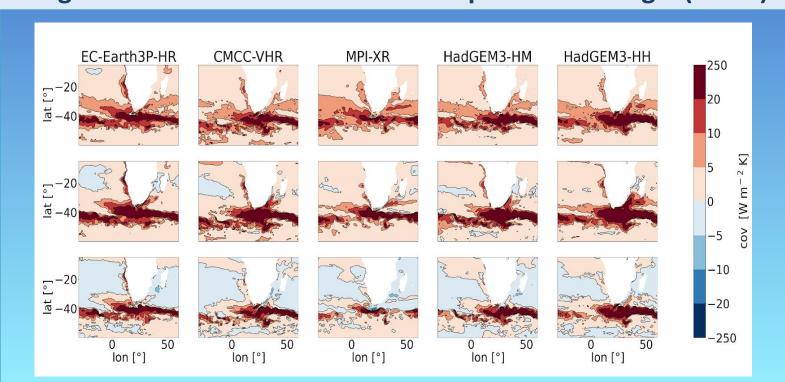
MODELS:	CMCC-VHR	CMCC-HR	EC-Earth-HR	EC-Earth	HadGEM-HH	HadGEM-HM	HadGEM-MM	HadGEM-LL	MPI-XR	MPI-HR	JOFURO	OAFLUX
Ocean	25km	25km	25km	100km	10km	50km	50km	250km	50km	50km	25km	100km
Atm	25km	100km	50km	100km	50km	50km	100km	250km	50km	100km	25km	100km



Results

Low resolution SST-THF covariance patterns for lag = (-1 0 1)

- In the Agulhas system, high covariance appear (ocean driven regime);
- 2 models do not reconstruct that signal.



Results

High resolution SST-THF covariance patterns for lag = (-1 0 1)

- Increasing spatial resolutions, covariance values rise;
- Ocean driven regime signal is reproduced in the ensemble.

Conclusions

- Reproducing physical interactions between ocean and atmosphere is strictly related to the **spatial resolution**.
- Lead lag correlation functions allow to analyse the quality of the **symmetry** of the signals.
- Some models need higher resolution to obtain the expected behaviour.
- Ocean driven regime signals can be removed (or similarly, it persist) using the proper **spatial filter**.

Any question is gladly welcome!

Contact me at jacopo.busatto@uniroma3.it