

EGU General 2022

Session HS8.2.11 - EGU22-9975

Estimation of specific yield of hard-rock aquifers in Upper Cauvery River basin region in India by application of AMBHAS-1D groundwater model

Shubham Goswami¹ and Sekhar Muddu^{1,2}

¹Department of Civil Engineering, Indian Institute of Science Bangalore, India (gshubham@iisc.ac.in)

²Indo-French Cell for Water Sciences, Indian Institute of Science, Bangalore, India

Estimation 5

Introduction

- Specific yield (Sy) is a key parameter in hydrology and water management, as it allows quantification of the available water resources of unconfined aquifers.
- Specific yield is volume of water that an aquifer releases from or takes into storage per unit aquifer area per unit change in water-table depth.
- Assessment of specific yield is crucial for an effective groundwater management in hard-rock aquifers in semiarid regions, especially southern India:
 - Dependence on groundwater for irrigation
 - High heterogeneity of aquifer properties in the region

Field Methods- pumping test and slug test [Ramsahoye and Lang (1961)]

Geophysical techniques- MRS and ERT [Legchenko et al. (2006)]

Water table fluctuation methods [GEC (2015), Subash et al. (2017)]

Motivation

- Estimated specific yield maps is an extremely important aquifer parameter which is used in groundwater and land-surface models for various hydrological studies.
- Water table fluctuation based models are more efficient and economic when studying larger areas
- Existing water table fluctuation-based approaches are not feasible for zero draft scenarios.
- Requirement of an alternate approach to account for discharge which was more dominant process to affect groundwater fluctuations in 1970s and 1980s.

Data Sources

Groundwater levels: Monthly groundwater level at 167 wells locations maintained by Department of Mines and Geology, Karnataka, India. Gaps in the data

are filled using linear interpolation.

Rainfall Data: Daily rain-gauge measured data from Department of Economics and Statistics (DES), Karnataka, India is aggregated to monthly time scale. Each groundwater well location is linked to nearest rain-gauge location.

Simulation period: 1980-1990

Assumption: No groundwater withdrawal

during the period

Study Area

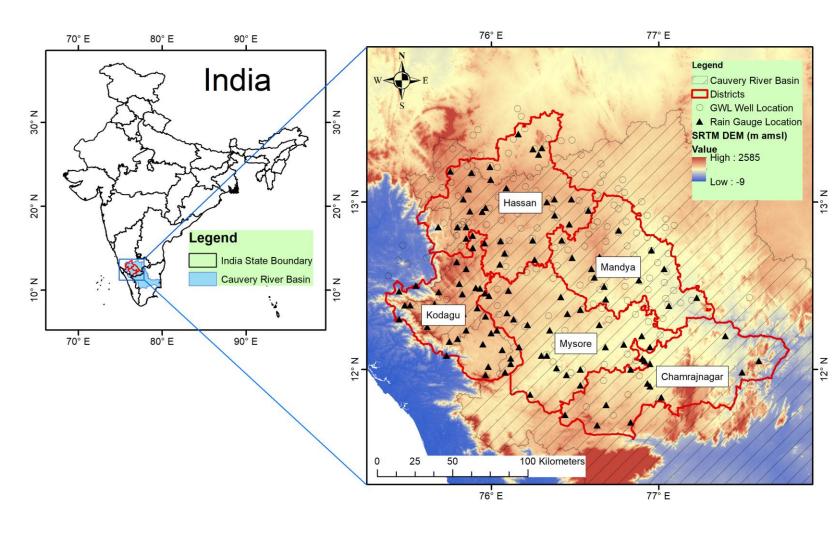
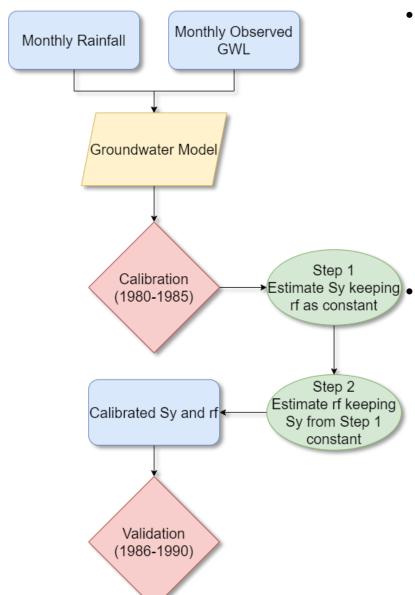


Fig. 1: Upper Cauvery river basin and Hassan, Mandya, Kodagu, Mysore, and Chamrajanagara districts of Karnataka in the region

Model


- AMBHAS-1D model is used for study (Subash et al., 2017)
- Physically based lumped model for unconfined aquifers based on Park and Parker (2008) equation:

$$\frac{dh}{dt} = \frac{-1}{Sy}\lambda h + \frac{r_f}{Sy}R - \frac{1}{Sy}D_{net}$$

where, h represents the groundwater level (L), t is time (T), S_y is specific yield of aquifer system (-), λ is the discharge constant (-), R is the rainfall (LT⁻¹), r_f is the recharge factor (-) and D_{net} is the net groundwater draft (LT⁻¹).

- The model runs at monthly time scale
- Model has an in-built optimization module which is used for calibration
- D_{net} for the simulation period from 1980-1990 is considered to be zero.

Methodology

- Recharge factor (r_f) was allowed to vary across years but keeping it in a range from 2 to 12 % and s_y range from 0.1 to 2% based on literature. (Collins et al., 2020)
- Nash-Sutcliffe
 Efficiency (NSE),
 RMSE and R²
 between
 observed and
 simulated
 groundwater
 levels are used to
 test the
 applicability of
 estimated
 specific yield
 values.

Results

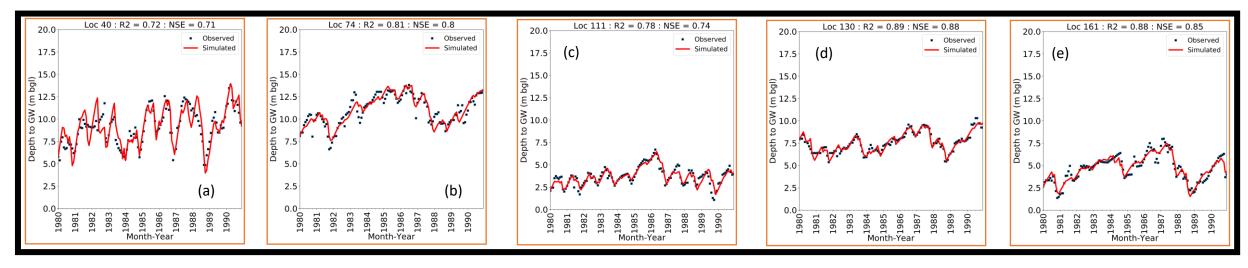


Fig. 2: Comparison of Simulated and Observed GWL at various well locations (a - e)

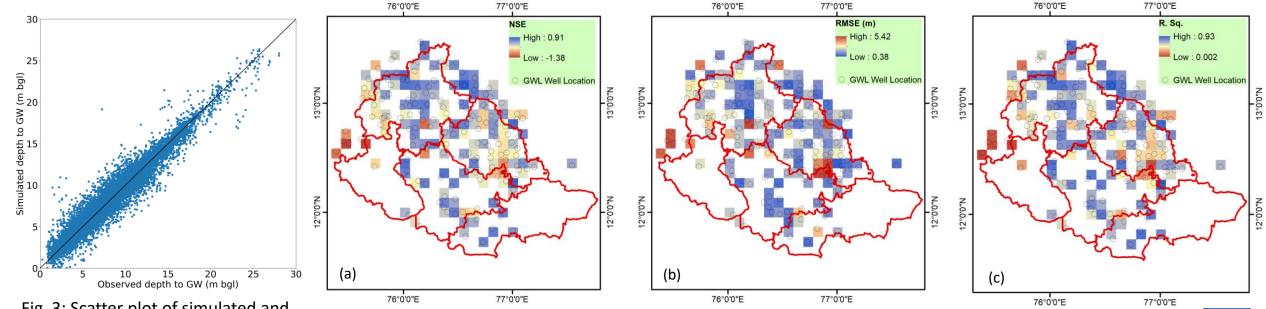


Fig. 3: Scatter plot of simulated and observed GWL at all well locations combined

Fig. 4: (a) NSE (b) RMSE and (c) R² of estimated GWL using estimated specific yield

Results and Discussion

- Specific yield map for the region is prepared using the Inverse Distance Weighting interpolation scheme.
- Despite being granitic gneissic rock in general, high variability in the estimated specific yield is observed.
- High variability can be associated with degree of fracturation, long-term rainfall trends, variation of water level and topographic impacts.
- Major area of Hassan, Chamrajnagar and Mandya districts of Karnataka state have very low estimated specific yield (<=0.5%) indicating poor fracturing in those regions.
- Clusters of relatively high specific yield (>1%) are observed in south western part of Mysore district and Mysore city depicting weathered upper zone.
- Estimates depth averaged specific yield values for shallow water tables which are representative of upper bounds of specific yield values because of weatherd upper zone.

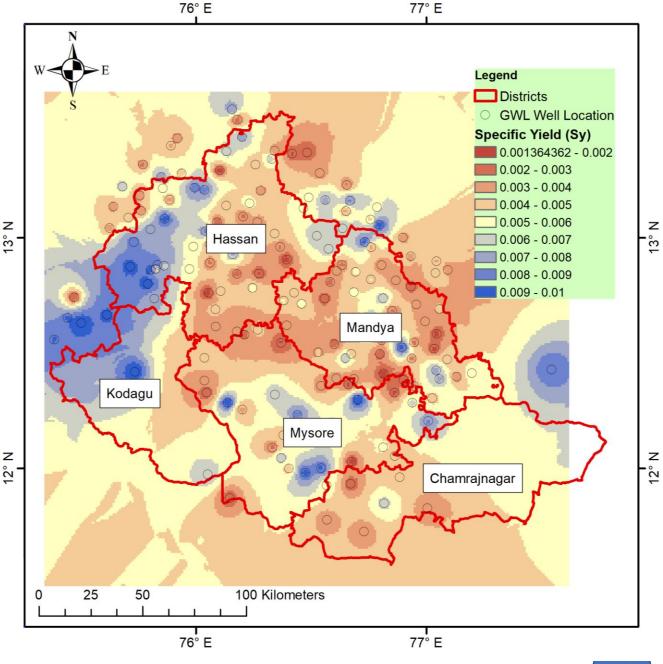


Fig. 5: Estimated specific yield values interpolated using Inverse Distance Weighting (IDW)

References

- Collins, S.L., Loveless, S.E., Muddu, S., Buvaneshwari, S., Palamakumbura, R.N., Krabbendam, M., Lapworth, D.J., Jackson, C.R., Gooddy, D.C., Nara, S.N.V. and Chattopadhyay, S., 2020. Groundwater connectivity of a sheared gneiss aquifer in the Cauvery River basin, India. *Hydrogeology Journal*, 28, pp.1371-1388.
- Legchenko, A., Descloitres, M., Bost, A., Ruiz, L., Reddy, M., Girard, J.F., Sekhar, M., Mohan Kumar, M.S. and Braun, J.J., 2006. Resolution of MRS applied to the characterization of hard-rock aquifers. *Groundwater*, 44(4), pp.547-554.
- Ramsahoye, L.E. and Lang, S.M., 1961. A simple method for determining specific yield from pumping tests. US Government Printing Office.
- Subash, Y., Sekhar, M., Tomer, S.K. and Sharma, A.K., 2017. A Framework for Assessment of Climate Change Impacts on Groundwater System Formations. In *Sustainable water resources management* (pp. 375-397).
- GEC (2015). Report of the Ground water resource Estimation Committee, Ministry of Water Resources, Govt. of India, New Delhi.
- Maréchal, J. C., Dewandel, B., Ahmed, S., Galeazzi, L., & Zaidi, F. K. (2006). Combined estimation of specific yield and natural recharge in a semi-arid groundwater basin with irrigated agriculture.
 Journal of Hydrology, 329(1–2), 281–293. https://doi.org/10.1016/j.jhydrol.2006.02.022
- Park, E., & Parker, J. C. (2008). A simple model for water table fluctuations in response to precipitation. *Journal of Hydrology*, *356*(3–4), 344–349. https://doi.org/10.1016/j.jhydrol.2008.04.022
- https://cran.r-project.org/package=ambhasGW

