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Outline

Cloud identification from satellites is challenging in polar environments
(especially for thin ice clouds). This is due to a similarity in thermal and
radiative properties of the surface and the cloud layer.

• Uncertainties about cloud radiative and microphysical
properties and radiation budget contribution.

• Uncertainties on retrieved atmospheric and surface products
(when incorrectly unidentified).

• Introduction of parametric errors in climate models.

Problem:

We aim at providing a reference statistic of cloud occurrence and
testing the performances of satellite sensors in detecting clouds at
Polar latitudes.



Data analysis at Dome-C (Antarctic Plateau)
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Main Results

Almost 70% of the full dataset is composed of clear-sky elements,
the rest 30% is divided between ice clouds (almost 28%) and
mixed-phase clouds (2%).

Different satellite products are considered, and the analysis are
produced both for space and time collocated data:
Important discrepancies between the ground based and satellite
data are found.
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Data analysis at Dome-C (Antarctic Plateau)

Within the PNRA project FIRCLOUDS a remote ground-based station on the Antarctic Plateau is used to test ability
to observe and derive cloud properties by exploiting the far infrared (FIR, 100-600 cm-1) and mid infrared spectral
regions.

We aim at:

• Testing identification/classification algorithms for high spectral resolution FIR-MIR remote sensing data

• Providing a reference statistic of cloud occurrence at multiple timescales and investigating for possible
correlations with atmospheric parameters

• Comparing cloud occurrence statistic on Dome-C from ground-based measurements with satellite L2 products

• Testing satellite performances in Cloud identification on the Antarctic Plateau



Concordia Station – Dome C (75.1°S, 123.3°E, 3233m)

Parameter Values

Spectral bandwidth 100–1500 cm-1 (100–6.7 μm)

Spectral resolution 0.4 cm-1 (double-sided interferograms)

Optical throughput 0.01 cm2 sr

Line of sight Zenith looking with a field of view of about 100 mrad

Single-spectrum 
integration time

80 s

Measurement
∽ 5.5 min (average of four observations),
Repetition rate  ∽ 14 min (sequence duration)

Measurement cycle
5-6 hours of measurements 
1-3 hours of analysis

NESR About 10-3 W/(m2 sr cm-1) at 400 cm-1

Year 2012-2020

# Spectra 233508

REFIR-PAD

Parameter Values

Channels
Backscatter and depolarization 
channels

Wavelength 532 nm (linear polarization)

Measurement range 30–7000 m

Vertical resolution 7.5 m

Line of sight
Zenith looking through a window all 
weather

Telescope
10 cm diameter, f = 30 cm refractive 
optics

Filter 0.15-nm interference filter

Laser Quantel (Brio)

LiDAR



Cloud occurrence on the Antarctic Plateau
• Motivation of the work:  Cloud identification from satellites is challenging in polar environments due to a similarity in 

thermal and radiative properties of the surface and the cloud layer. Both active and passive measurements suffer from 
various issues which affect cloud detection in Artic and Antarctic regions.

Sensor Product (area) Notes

MODIS Cloud fraction (3 000 km2) Low efficiency at IR – Dependent on solar zenith angle

CALIOP Vol. cloud occurrence (15 000 km2) Low efficiency to detect thin clouds close to the ice surface

CLOUDSAT Vol. cloud occurrence (75 000 km2) Unable to detect thin cirrus (vertical res  500 m)



Analysis Methods: The CIC Algorithm

Support Vector Machine with linear kernel analyses
the key features of two classes (defined by a linear
discriminant analysis).
A supervised learning algorithm defines the features of
2 reference training sets and a metric to establish the
distance between the analyzed element and the TSs

TS1 TS2

CIC exploits the PCA analysis to extract the
information content of 2 reference TSs and
their change due to the addition of the
analyzed element. This allows to rely on
small TSs and to easily implement the
algorithm to different systems

TS1 TS2

ETS1 ETS
2

The metric is defined by the information 
content of the TS

Spectrum to be 
classified

The metric is defined by the comparison of 
the features of the TSs and of the element

CIC is a machine learning algorithm that performs a principal component analysis (PCA) to classify the scene as 
clear or cloudy, and to identify the type of cloud – multi-class comparison



The number of significant principal components (P0) for each TS, that bring the information about the TS 
variability, is computed by minimizing the IND factor (Turner et al., 2006)

𝐼𝑁𝐷 𝑝 =
𝑅𝐸 𝑝

𝑃−𝑝 2 where  𝑅𝐸 𝑝 =
σ𝑖=𝑝+1
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A similarity index (SI) is defined as the comparison of the significant eigenvalues of TS and ETS for each 
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The SIs are compared in couples, for all the classes. The highest SI in each couple defines a «score point» 
for that class – Elementary approach. 

𝑆𝐼𝐷 = 𝑆𝐼𝐶𝐿𝑂𝑈𝐷 − 𝑆𝐼𝐶𝐿𝐸𝐴𝑅
SID < 0 → CLEAR SKY   or   SID > 0 → CLOUDY SKY

CIC - Algorithm



Results might be affected (and biased) if one of the training sets is not well populated by spectra that are
representative of the variability within the class. In this case, a distributional approach can be adopted for
the classification in which the distribution of the SIDs of the training set is analyzed before performing the
classification

𝐶𝑆𝐼𝐷 = 𝑆𝐼𝐷 − 𝑠ℎ𝑖𝑓𝑡𝑜𝑝𝑡

The shiftopt is computed maximizing the number of TS spectra correctly classified (True Positive)

Maestri et al., 2019

CIC - Algorithm



CIC: optimization and error definition

CIC

Training 
Sets

Test Set

Dataset
233508 spectra

CIC performances are evaluated on a
test set on which an Hit Rate is defined
that is used to provide classification
percentual error

The 11 years dataset is analyzed  and 
statistics are provided on multiple time 
scales

A metric of the information content is 
defined by applying the CIC to the elements 
of the TSs

Verification 
Set

CIC is optimized by finding the highest 
Threat Scores for all the classes → 380-1000 
cm-1

Spectra co-located with lidar observations 
(warm and cold season)

lidar co-located spectra

ThS =
TP

TP + FP + FN



CIC applied to REFIR-PAD spectra – TRAINING SET

Spectra composing the Training Sets are selected from a subset of manually classified observations. This pre-
classification is performed using the LiDAR instrument.

LiDAR backscatter signal increases in presence of cloud layers

• Depolarization < 0.15  →mixed-phase cloud

• Depolarization > 0.15  → ice cloud

Training Set  ||  119 spectra

Clear-sky Ice cloud Mixed-phase cloud 

Warm Season 23 22 14

Cold Season 40 20 -



CIC applied to REFIR-PAD spectra – TEST SET

Field N. Spectra ThS HR N. Misclass spectra Misclassification PPV

Clear-sky 323 0.91 0.92 25 7.8% ice cloud
0% mixed-phase cloud

0.99

Ice cloud 590 0.93 0.98 10 0.68% clear-sky
1.02% mixed-phase cloud

0.94

Mixed-phase cloud 79 0.80 0.86 11 0% clear-sky
13.92% ice cloud

0.92

Tot 992 0.91 0.95 46 4.6% 0.95

𝑻𝒉𝑺 =
𝑻𝑷

𝑻𝑷 + 𝑭𝑵 + 𝑭𝑷

𝑯𝑹 =
𝑻𝑷

𝑻𝑷 + 𝑭𝑵

𝑷𝑷𝑽 =
𝑻𝑷

𝑻𝑷 + 𝑭𝑷

Indices used to evaluate the algorithm performance:

Threat Score

Hit Rate

Positive Predictive Value

95% of spectra are correctly classified. 



CIC applied to REFIR-PAD spectra – TEST SET

The CIC is finally run over the full dataset (2012-2020). Results are provided in terms of percentages, with an 
associated error. Results refer to the spectral interval [380-1000]𝑐𝑚−1 and the maximum num. of PCs.

Year Clear-sky 
(%)

Ice cloud
(%)

Mixed-
phase cloud 

(%)

Observation 
Time
(%)

2012 56.07 ± 4.70 38.25 ± 0.66 5.68 ± 0.92 27.38

2013 71.01 ± 5.96 27.51 ± 0.47 1.48 ± 0.24 29.61

2014 69.97 ± 5.87 27.97 ± 0.48 2.06 ± 0.33 67.36

2015 67.46 ± 5.66 30.70 ± 0.53 1.84 ± 0.30 65.27

2016 67.50 ± 5.66 30.55 ± 0.53 1.96 ± 0.32 82.32

2017 70.42 ± 5.90 27.83 ± 0.48 1.74 ± 0.28 79.86

2018 72.48 ± 6.08 24.35 ± 0.42 3.17 ± 0.51 87.14

2019 69.52 ± 5.83 28.24 ± 0.49 2.25 ± 0.36 90.75

2020 76.39 ± 6.41 22.13 ± 0.38 1.48 ± 0.24 90.57

Total 70.09 ± 5.88 27.70 ± 0.48 2.25 ± 0.36 69.11

Almost 70% of the full dataset is composed of clear-sky elements, the rest 30% is divided 
between ice clouds (almost 28%) and mixed-phase clouds (2%).



Correlation with Surface Temperature
The detected cloudy sky occurrence increases (clear skies decrease) as surface air temperature increases (except that for
the spring -SON)

<𝑻𝒄𝒍𝒆𝒂𝒓> = -35.64°C
<𝑻𝒄𝒍𝒐𝒖𝒅> = -32.79°C
<𝑻𝒂𝒍𝒍−𝒔𝒌𝒚> = -34.76°C

<𝑻𝒄𝒍𝒆𝒂𝒓> = -62.04°C
<𝑻𝒄𝒍𝒐𝒖𝒅> = -55.41°C
<𝑻𝒂𝒍𝒍−𝒔𝒌𝒚> = -60.36°C

<𝑻𝒄𝒍𝒆𝒂𝒓> = -66.62°C
<𝑻𝒄𝒍𝒐𝒖𝒅> = -57.97°C
<𝑻𝒂𝒍𝒍−𝒔𝒌𝒚> = -63.65°C

<𝑻𝒄𝒍𝒆𝒂𝒓> = -53.44°C
<𝑻𝒄𝒍𝒐𝒖𝒅> = -49.41°C
<𝑻𝒂𝒍𝒍−𝒔𝒌𝒚> = -52.29°C

<𝑻𝒄𝒍𝒐𝒖𝒅> - <𝑻𝒄𝒍𝒆𝒂𝒓> = 8.65°C 
<𝑻𝒂𝒍𝒍−𝒔𝒌𝒚> - <𝑻𝒄𝒍𝒆𝒂𝒓> = 2.97°C



REFIR-PAD vs MODIS cloud occurrence

MODIS spatially collocated data: 2052
Nadir observations (zenith angle < 8°)

MODIS spatially and temporally collocated data: 1118
Nadir observations (zenith angle < 8°)

MODIS products are derived from MOD35 cloud mask

Statistical comparison One-to-one comparison

MODIS data available from 2012 to 2020.
Types of collocation:

→ Spatial collocation: Dome-C is inside MODIS field of view (max distance 1km). MODIS cloud mask on Dome-C for the same time 
interval (2012-2015) is compared to CIC monthly mean statistic.

→ Spatial-temporal collocation: each MODIS observation corresponds to a REFIR-PAD measurement (satellite passing maximum 15 
minutes before the observation time of the REFIR-PAD)

Total Clear-sky Ice cloud Mixed-phase 
cloud

1118

REFIR-PAD (CIC) 766 (68.5%) 337 (30.1%) 10 (0.9%)

MODIS 1002 (89.6%) 108 (9.7%) 3 (0.3%)

More than 70% of not identified clouds by MODIS occur in winter 
months (March to August).

In collaboration with the 
University of Wisconsin-Madison
Dr. R.E. Holz
Dr. P. Veglio



REFIR-PAD spectra vs IASI cloud occurrence

IASI data available from 2012 to 2015

Spatial-temporal collocation for L1 and L2 IASI products:

• the IASI measurement is carried out within 15 minutes off the observation time 
of the REFIR-PAD

• the maximum distance of the IASI pixel center from the REFIR-PAD instrument is 
less than 6 km (the ground observation is within the IASI IFOV)

A filter for satellite zenith angles below 6.7° has been introduced to avoid geometric 
distortions (only “almost-nadir observations”).

Total Clear-sky Ice cloud Mixed-phase cloud Unclass

167
REFIR-PAD (CIC) 117 (70.06%) 44 (26.35 %) 6 (3.59 %) -

IASI 43 (25.75 %) 121 (72.45 %) 3 (1.80 %) -

IASI spatially and temporally collocated data: 167



Comparison of MYD06 and IASI L2 cloud products

Total Clear-sky Ice cloud Mixed-phase cloud Unclass

167
REFIR-PAD (CIC) 117 (70.06%) 44 (26.35 %) 6 (3.59 %) -

IASI 43 (25.75 %) 121 (72.45 %) 3 (1.80 %) -

40

REFIR-PAD (CIC) 28 (70%) 9 (22.5%) 3 (7.5%) -

MODIS AQUA (1 km) 35 (87.5%) 4 (10%) 0 1 (2.5%)

CLOUDSAT-CALIPSO

MODIS AQUA (12 km)
(CF>0)

38 (95%)

31 (77.5%)

0 (0%)

8 (20%)

2 (5%)

0 1 (2.5%)

NOTES:
• CIC: Highly sensible to thin clouds
• IASI: extremely clear conservative
• CALIOP: Low efficiency to detect thin clouds close to the ice surface
• CPR: Unable to detect low level and thin cirri (vertical resolution = 500 m)
• MODIS: Low efficiency at IR – Dependent on solar zenith angle

Is the satellite footprint size the cause for the different cloud occurrence statistic between REFIR-PAD 
(or MODIS) and IASI?



Main Conclusions

• L3 products are representative of grid areas. Monthly means L3 cloud occurrence (fraction) show significant differences with respect 
to ground-based derived products likely due to the large dimension of the grid and to detection performances (seasonal dependent). 

• Long records from ground-based measurements  are required to test L2 satellite products when strict collocation constrains are set. 

• Significant differences in cloud occurrences are found among multiple satellite sensors both passive (i.e. MODIS vs IASI) or active 
(CPR and CALIOP) and ground based derived products. 

• The main cause affecting the satellite detection performances seems to be the difficulties in identifying of low level thin ice layers. 
The CIC algorithm is sensible to very thin ice layers and diamond dust

• CIC is a reliable tool for cloud identification and classification, demonstrated by 95% of REFIR-PAD spectra correctly classified.

• When CIC is applied to IASI spectra, 65% of scenes match the ground observations (64% for clear-sky and 72% for cloudy sky). On 
the limited dataset, the IASI cloud occurrence is 74% for IASI L2 product and 37% for CIC classification. 

• An improvement in cloud identification from passive sensors is expected by exploiting the FIR part of the spectrium (FORUM)
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