

Improved inference of tropical vegetation properties using seasonal Landsat Vegetation Indices

¹Leverhulme Centre for Wildfires, Environment and Society; ²Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, UK; ³Geography and Environmental Science, University of Reading, Reading, UK

1. MOTIVATION

- Ecologist measure disturbed vegetation properties more accurately by field sampling.
- These ecological plots have limited spatio-temporal data due to short-term projects, funding constraints.
- Huge grant investment on satellite sensor development that are sensitive to vegetation are less appreciated.
- Higher temporal- and medium-resolution optical Landsat derived Normalized Difference Vegetation Index (NDVI) is widely employed to estimate vegetation biophysical properties in **undisturbed ecosystem** especially at **peak growing** with varying performances among biomes types.

2. METHODOLOGY

(VIs) using Landsat Thematic Mapper (TM) and Operational Land Imager (OLI).

Field sampled species number, basal area/ aboveground biomass (AGB) in fire/ logged tropical biomes. Aim is to explore statistical relationship to inform post-fire tropical vegetation properties and recovery using seasonal VIs.

- Peak-season Green NDVI, Normalized Difference Moisture Index (NDMI), Normalized Burn Ratio (NBR2) are useful for species number, basal area/ AGB in homogenous open savanna and savanna forest (**fig 1**).
- Late-season NDVI, Green NDVI, NDMI, NBR showed stronger relationships in more complex forest biomes (fig 2). • It took 9 and 16 years to recover species number and basal area in mixed peatswamp and evergreen forests (fig 3).

• Peak (dry) and end (wet) seasons Landsat derived ten greenness, moisture content and fire severity vegetation indices

3. RESULTS

Fig 1. Sensitivity of species number in peak (top panel) and end (bottom panel) seasons VIs for 3 tropical sites.

Ramesh K. Ningthoujam^{1,2*}, Sandy P. Harrison^{1,3} and I. Colin Prentice^{1,2}

Fig 2. Sensitivity of basal area in peak (top panel) and end (bottom panel) seasons VIs for 2 tropical sites.

Fig 3. Species number and basal area recovery for mixed peatswamp and wet evergreen forests.

4. CONCLUSION

• Landsat derived seasonal greenness, moisture content and fire severity data are useful to infer post-fire vegetation properties. • Multi-temporal greenness, moisture content and fire severity indices help to monitor vegetation recovery to support limited spatio-temporal ecological sample plots in disturbed tropical ecosystems.

ACKNOWLEDGEMENTS

Field data: Nayane P., Kayla F., Marcelo A., Maria C., Corli C., Maria C., Mark H., Kitso K., Agata H., Adam P., Stephen A-B., Dolors A., Imma O., Rob E., Ted

F., Sue P., Jay M. Landsat data: NASA. Funded: Leverhulme Trust.

Imperial College London University of Reading

LEVERHULME Centre for Wildfires. Environment and Socie

* r.ningthoujam@imperial.ac.uk