Outer Core Heat Flux in Small Terrestrial Bodies from Electrical
Resistivity Measurements of Liquid Fe-85-4.5S1 at High Pressure
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Introduction to Planetary Core Heat Flow

Due to Internal dynamo action, Io
the motion of liquid Fe alloys The Innermost of the Galilean

Inside terrestrial cores may moons has been observed to

cause a planetary magnetic field possess an Fe corell. S is also

to form. One energy source of thought to comprise th_e core of

this motion of Fe alloys is heat O lo, In part due to its lower
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Planetary Bodies of Interest Implications for the Fluid
Velocity of the Ionian Core
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flow through the core. This study volatility at greater distances
constrains adiabatic heat flow at \///”\\ from the Sunl?l. Of the Galilean

4 Inner  Outer moons, lo has by far the largest o
the top of exoplanetary cores, / C \ , y 9
with implications for thermal ——— expected bulk Si proportion®. ‘ W oo o oom oo

convection. Total Heat Flow through CMB (Previous Models) While Ganymede possesses an Absence or presence of dynamo action in lo’s
Intrinsic magnetic field, lo does

(This Study) ot core depends on the magnetic Reynolds

Convective Heat Flow in Core Kepler 444d number (Re) — Re,, = ULop
M= 0.6-6.0 x 1023 kg 5] and R = 3.3-3.5x106 m ![6] U: Characteristic Fluid Velocity

L: Characteristic Length

H igh PI’ESSU Fe MEthOdS LL: Magngtic Permeal?i!ity FCOTlU ~ UZQHTp * [7]
Experiments on liquid Fe-8wt%S-4.5wt%Si Electrical Resistivity Results 0 blectrical Foncuctvity

Q: Angular Velocity

(Fe-8S-4.5Si) at 2, 3, 4, or 5 GPa were carried . 85455, | O | | . seale Height [r,  ~ 3.3U 2H T p* /L @
out in a 1000-ton cubic anvil press. 1inc [ p™: Y

EMPA Results*
Fe-85-4.5S1 Sample

Predicted Convective Force (WW/m?)

Characteristic Velocity (mm/s)

ansit Depth (ppm)

Time from mid-transit (hours)

[ TN b - lo’s lack of an intrinsic magnetic field may be
i TR attributable to a low characteristic velocity of a
| ’ ' liquid core Iif the convective force at the top of
the core is less than a few pW/m?=.

16525 212 GPa s Swa 1 Heat Flow through Fe-8S-4.5Si

Fe-85-4.5Si at 5 GPa (This Stud
Thermocouple © at S GPa (This Study)

- ' | Fe-35-14Si at 5 GPa (Litt ., 2022)-
Wires Pyrophyllite Pressure Cell | © at > GPa (Littleton et a T Pla neta ry CO res
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Fe-35-8Si at 6 GPa (Pommier, 2018)
Fe-3S-3Si at 50 GPa (Suehiro et al., 2017) ]
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Thermal Conductivity Results

Fe-85-4.5Si
= 2 GPa
3 GPa
= 4GPa
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The Wiedemann-Franz Law
approximates the thermal conductivity
of Fe-85-4.5Si at core temperatures
and pressures:
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Electron  Microprobe Analysis of ,' ' _ _[ e *:;_/ ’/'  ! . .
several points on a post-experimental E § Y ek - = 7 K. Thermal Conduct|V|ty

Thermal Conductivity (W/m/K)
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R: Radius of the Core
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