Identification Of Critical Water Futures In The Indus River Basin

Amal Sarfraz*^{1,3,5}, Charles Rougé¹, Lyudmila Mihaylova², Jonathan Lamontagne³, Abigail Birnbaum³, & Flannery Dolan⁴

*asarfraz1@sheffield.ac.uk, ¹Department of Civil and Structural Engineering, The University of Sheffield, UK, ³Department of Civil and Environmental Engineering, Tufts University, United States, ⁴RAND Corporation, United States, ⁵Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Pakistan

1. Motivation

- The Indus River Basin (IRB) faces significant water scarcity challenges due to climate change, population growth, unregulated water abstraction and unsustainable agricultural practices.
- Integrated Assessment Models (IAMs) can provide comprehensive assessments of these complex interactions. • Recent study conducted by Dolan et al. (2021) used Global Change Analysis Model (GCAM) to generate a large
- ensemble of 3,000 plausible future scenarios across multiple dimensions.

- References
- 296. https://doi.org/10.1016/j.gloenvcha.2016.06.010

- databases
 - To discover critical water futures as "Ensemble of Outliers".
 - ii. Analyse their attributes, including what makes them critical.

Dolan, F., Lamontagne, J., Link, R., Hejazi, M., Reed, P., & Edmonds, J. (2021). Evaluating the economic impact of water scarcity in a changing world. Nat Commun, 12(1), 1915. https://doi.org/10.1038/s41467-021-22194-0 • Calvin, K., Bond-Lamberty, B., Clarke, L., Edmonds, J., Eom, J., Hartin, C., Kim, S., Kyle, P., Link, R., Moss, R., McJeon, H., Patel, P., Smith, S., & Wise, M. (2017). The SSP4: A world of deepening inequality. Global Environmental Change, 42, 284-

2. Objectives

Utilising the IRB as a case study, we develop a methodology that harnesses the power of such large ensembles of

Characteristics (SSP-Shared Socioeconomic Pathways)		
omics	Agriculture	Land Use Scenario
3 rivalry, peration, parities	SSP1,SSP5 Sustainable practices, High input farming with intensive use of resources	Universal Carbon Tax Low carbon technologies
	SSP1, SSP5, SSP2 A combination of sustainable and conventional agriculture practices	_

 Table 1. Characteristics of Potential Ensembles of Outliers

5. Future Work

- Integrate identification and characterisation of ensembles of critical futures.
 - Method for Ensemble of Outlier detection (this poster).
 - Systematic detection of critical futures across multiple basins / regions / sectors.
 - (Un)supervised classification to characterise these critical futures.
- Broaden methodology to larger datasets.
 - Identification of scenarios that are outliers in many basins / sectors at once.
 - Dynamics: when / how do critical futures emerge?

