

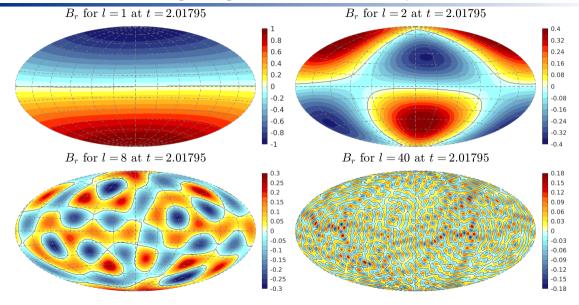
Scaling of the geomagnetic secular variation time scales

Yue-Kin Tsang

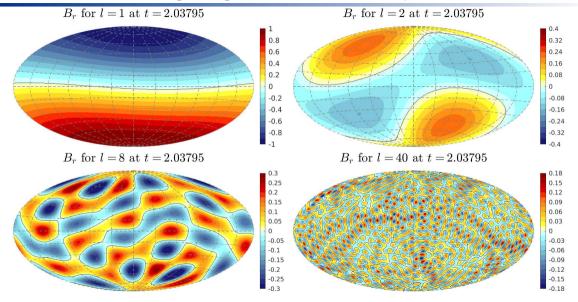
School of Mathematics, Statistics and Physics Newcastle University

 $\begin{array}{c} \text{Chris Jones} \\ \textit{University of Leeds} \end{array}$

Time variation of the geomagnetic field at different spatial scales



Time variation of the geomagnetic field at different spatial scales



Spectra: to study properties at different spatial scales

(1) Lowes spectrum $(r \geqslant r_{\rm cmb})$

$$R(l,r,t) = \left(\frac{a}{r}\right)^{2l+4} (l+1) \sum_{m=0}^{l} \left[g_{lm}^{2}(t) + h_{lm}^{2}(t) \right],$$

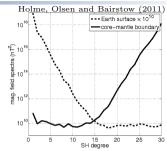
$$\sum_{l=1}^{\infty} R(l, r, t) = \frac{1}{4\pi} \oint |\mathbf{B}(r, \theta, \phi, t)|^2 \sin \theta \, d\theta \, d\phi$$

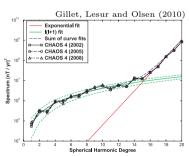
(a = Earth's radius)

(2) Secular variation spectrum $(r \geqslant r_{cmb})$

$$R_{\rm sv}(l,r,t) = \left(\frac{a}{r}\right)^{2l+4} (l+1) \sum_{m=0}^{l} \left[\dot{g}_{lm}^{2}(t) + \dot{h}_{lm}^{2}(t) \right]$$

$$\sum_{l=1}^{\infty} R_{\rm sv}(l,r,t) = \frac{1}{4\pi} \oint |\dot{\boldsymbol{B}}(r,\theta,\phi,t)|^2 \sin\theta \, \mathrm{d}\theta \, \mathrm{d}\phi \,, \quad \dot{\boldsymbol{B}} = \frac{\partial \boldsymbol{B}}{\partial t}$$





Secular variation time-scale spectrum

$$R(l) \sim$$
 "amount" of B^2 in spatial scale l

 $R_{\rm sy}(l) \sim$ "amount" of \dot{B}^2 in spatial scale l

$$\tau_{\rm sv}(l,t) = \sqrt{\frac{R}{R_{\rm sv}}} = \sqrt{\frac{\sum_{m=0}^{l} \left(g_{lm}^2 + h_{lm}^2\right)}{\sum_{m=0}^{l} \left(\dot{g}_{lm}^2 + \dot{h}_{lm}^2\right)}} \quad (r \geqslant r_{\rm cmb})$$

- \blacksquare characteristic time scale of magnetic field structures with spatial scale characterised by l
- numerical simulations and *some* satellite data support the simple power-law: $\tau_{\rm sv}(l) \sim l^{-1}$ (there are still some debates about this)
- theoretically, a common argument based on the frozen-flux hypothesis:

$$\dot{B}_r = -\nabla_{\rm h} \cdot (\boldsymbol{u}_{\rm h} B_r)$$

$$\nabla_{\rm h} \sim \sqrt{l(l+1)} \sim l \quad \text{and} \quad \boldsymbol{u}_{\rm h} \sim U$$

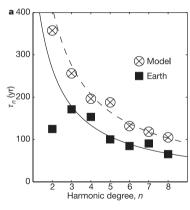
$$\tau_{\rm sv} \sim B_r/\dot{B}_r \sim l^{-1}$$

Questions

- 1. $\tau_{\rm sv}$ is defined using the Gauss coefficients obtained from \boldsymbol{B} outside the outer core. Do $\tau_{\rm sv}$ and the scaling law $\tau_{\rm sv} \sim l^{-1}$ describe the time variation of \boldsymbol{B} inside the outer core? [No. Inside the outer core, \boldsymbol{B} is not potential. \dot{B}_r \dot{B}_θ and \dot{B}_ϕ may all be important.]
- 2. Does the frozen-flux argument explain the scaling $\tau_{\rm sv} \sim l^{-1}$ observed at the surface? [No. Magnetic diffusion is important near the CMB.]
- 3. What mechanisms lead to the observed scaling $\tau_{\rm sv} \sim l^{-1}$? [Briefly, balance between $\nabla \times (\boldsymbol{u} \times \boldsymbol{B})$ and $\nabla^2 \boldsymbol{B}$ at the CMB. Details depend on the boundary conditions.]

Scaling of $au_{ m sv}(l)$: observations and numerical models

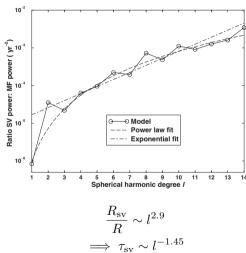
Christensen and Tilgner (2004) observation data 1840–1990 and numerical dynamo models



$$au_{\rm sv} \sim l^{-1}$$

Holme and Olsen (2006)

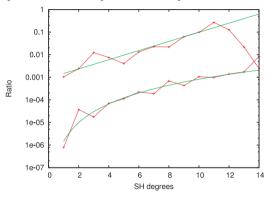
satellite data 1999-2003



Scaling of $au_{ m sv}(l)$: observations and numerical models

Lesur et al. (2008)

 $6\mathrm{yr}$ CHAMP + $5\mathrm{yr}$ observatory data

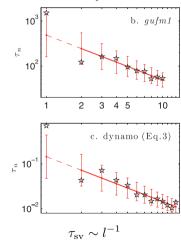


$$\frac{R_{\rm sv}}{R} \sim l^{2.75}$$

$$\implies \tau_{\rm ev} \sim l^{-1.38}$$

Lhuillier et al. (2011)

'historical data' 1840–1990, satellite data (2005) and numerical dynamo models



The scaling exponent $\boldsymbol{\gamma}$

$$\tau_{\rm sv}(l) \sim l^{-\gamma}$$
 (excluding $l=1$)

- numerical models: $\gamma = 1$
- observations: mixed results, $1.32 < \gamma < 1.45$ and $\gamma = 1$
- time average vs. snapshot
- why study τ_{sv} : infer properties of the magnetohydrodynamics inside the outer core from observations at the surface

We should first ask:

Is τ_{sv} relevant to the time scale of $\hat{\boldsymbol{B}}$ inside the outer core?

Generalisation to inside the dynamo region (outer core)

Recall the definition of the Lowes spectrum R(l, r, t) for $r \ge r_{cmb}$,

$$\boldsymbol{B} = -\nabla \Psi, \quad \Psi(r, \theta, \phi, t) = a \sum_{l=1}^{\infty} \sum_{m=0}^{l} \left(\frac{a}{r}\right)^{l+1} \hat{P}_{lm}(\cos \theta) \left[g_{lm}(t) \cos m\phi + h_{lm}(t) \sin m\phi\right]$$

$$\frac{1}{4\pi} \oint |\mathbf{B}(r,\theta,\phi,t)|^2 \sin\theta \,d\theta \,d\phi = \sum_{n=0}^{\infty} R(l,r,t)$$

$$R(l,r,t) = \left(\frac{a}{r}\right)^{2l+4} (l+1) \sum_{m=0}^{l} \left[g_{lm}^{2}(t) + h_{lm}^{2}(t) \right]$$

For any r, expand in vector spherical harmonics.

$$\boldsymbol{B}(r,\theta,\phi,t) = \sum \left[\underline{q_{lm}(r,t)} \hat{\boldsymbol{Y}}_{lm}(\theta,\phi) + \underline{s_{lm}(r,t)} \hat{\boldsymbol{\Psi}}_{lm}(\theta,\phi) + \underline{t_{lm}(r,t)} \hat{\boldsymbol{\Phi}}_{lm}(\theta,\phi) \right]$$

We define the magnetic energy spectrum F(l, r, t) for all r:

$$\sum_{l=1}^{\infty} \mathbf{F}(\mathbf{l}, \mathbf{r}, \mathbf{t}) \equiv \frac{1}{4\pi} \oint |\mathbf{B}(\mathbf{r}, \theta, \phi, t)|^2 d\Omega = \sum_{l=1}^{\infty} \left[\frac{1}{(2l+1)} \sum_{m=0}^{l} (|q_{lm}|^2 + |s_{lm}|^2 + |t_{lm}|^2) (4 - 3\delta_{m,0}) \right]$$

Generalisation to inside the dynamo region (outer core)

$$F(l,r,t) = \frac{1}{(2l+1)} \sum_{n=0}^{l} (|q_{lm}|^2 + |s_{lm}|^2 + |t_{lm}|^2)(4 - 3\delta_{m,0})$$

Similarly, define the time variation spectrum $F_{\dot{B}}(l,r,t)$:

$$\dot{\boldsymbol{B}}(r,\theta,\phi,t) = \sum \left[\dot{q}_{lm}(r,t) \hat{\boldsymbol{Y}}_{lm}(\theta,\phi) + \dot{s}_{lm}(r,t) \hat{\boldsymbol{\Psi}}_{lm}(\theta,\phi) + \dot{t}_{lm}(r,t) \hat{\boldsymbol{\Phi}}_{lm}(\theta,\phi) \right]$$

$$\sum_{l=1}^{\infty} F_{\dot{B}}(l,r,t) \equiv \frac{1}{4\pi} \oint |\dot{\boldsymbol{B}}(r,\theta,\phi,t)|^2 d\Omega = \sum_{l=1}^{\infty} \left[\frac{1}{(2l+1)} \sum_{m=0}^{l} \left(|\dot{q}_{lm}|^2 + |\dot{s}_{lm}|^2 + |\dot{t}_{lm}|^2 \right) (4 - 3\delta_{m,0}) \right]$$

Then, the magnetic time-scale spectrum is defined as:

$$au(l,r) = \left\langle \sqrt{rac{F(l,r,t)}{F_{\dot{B}}(l,r,t)}} \, \right
angle_t$$

Outside the dynamo region: F=R , $F_{\dot{B}}=R_{\rm sv}$, $\tau=\tau_{\rm sv}$

A numerical model of geodynamo

Boussinesq, compositional driven, rotating convection of a electrically conducting fluid:

$$\frac{\mathbf{D}\boldsymbol{u}}{\mathbf{D}t} + 2\frac{Pm}{Ek}\hat{\boldsymbol{z}} \times \boldsymbol{u} = -\frac{Pm}{Ek}\nabla\Pi' + \left(\frac{RaPm^2}{Pr}\right)C'\boldsymbol{r} + \frac{Pm}{Ek}(\nabla\times\boldsymbol{B})\times\boldsymbol{B} + Pm\nabla^2\boldsymbol{u},$$

$$\frac{\partial\boldsymbol{B}}{\partial t} = \nabla\times(\boldsymbol{u}\times\boldsymbol{B}) + \nabla^2\boldsymbol{B}$$

$$\frac{\mathrm{D}C}{\mathrm{D}t} = \frac{Pm}{Pr}\nabla^2 C - 1$$

$$\nabla \cdot \boldsymbol{u} = 0$$

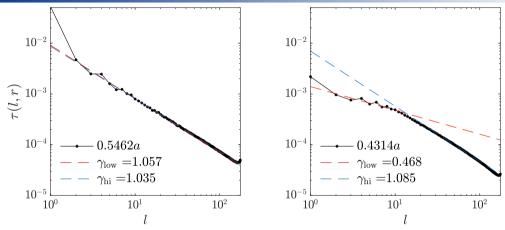
$$\nabla \cdot \boldsymbol{B} = 0$$

Boundary conditions: no-slip for u, Neumann for C

Domain: a spherical shell $0.1912\,a\leqslant r\leqslant 0.5462\,a$

$$Ra = 2.7 \times 10^8$$
, $Ek = 2.5 \times 10^{-5}$, $Pm = 2.5$, $Pr = 1$

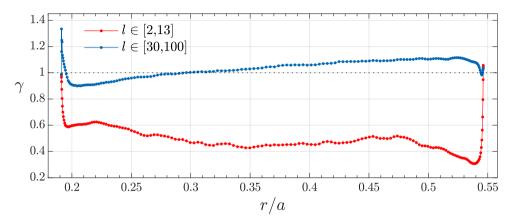
Magnetic time-scale spectrum au(l,r) at different depth



For the large-scale modes (small l),

- \blacksquare at the surface: $\tau \sim l^{-1}$
- in the interior: $\tau \sim l^{-0.5}$, the large-scale modes speeds up in the interior!

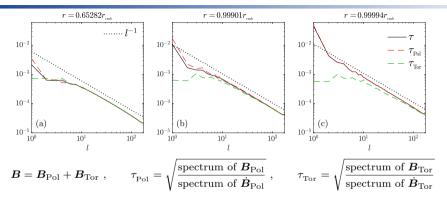
Change in the scaling of τ : where does it occur?



 \bullet γ for the large-scale modes increases sharply within a boundary layer under CMB

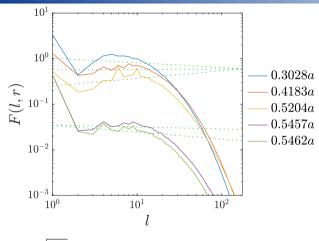
Focus on the large scales in following discussion ...

Poloidal and toroidal time scales



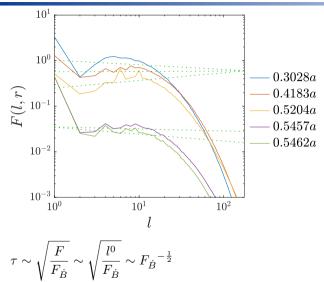
- interior: B_{Pol} and B_{Tor} are equally important, $\tau = \tau_{Pol} = \tau_{Tor}$ all have the same shape
- ullet CMB: $B_{\mathrm{Tor}} o 0$ due to the magnetic boundary condition, so $B pprox B_{\mathrm{Pol}}$
 - $m{\bullet}$ $\tau_{_{\mathrm{Tor}}}$ has the same shape as in the interior but it is irrelevant
 - $\tau_{\rm Pol}$ changes shape as $r \to r_{\rm cmb}$, $\tau = \tau_{\rm Pol} \sim l^{-1}$
- contribution of \dot{B}_{θ} and \dot{B}_{ϕ} to \dot{B} in the interior masked by the boundary conditions

Change in the scaling of τ : who causes it?

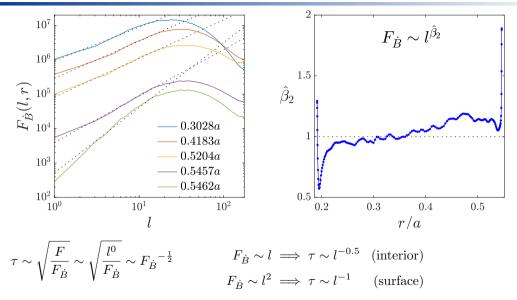


$$\sim \sqrt{rac{F}{F_{B}}}$$

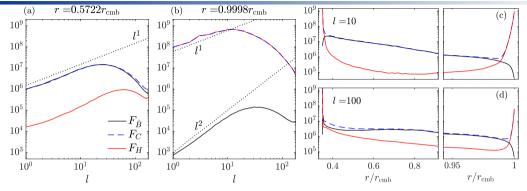
Change in the scaling of τ : who causes it?



Change in the scaling of τ : who causes it?



Balance of terms (large scales) in the induction equation



$$\dot{\boldsymbol{B}} = \nabla \times (\boldsymbol{u} \times \boldsymbol{B}) + \eta \nabla^2 \boldsymbol{B} = \boldsymbol{C} + \boldsymbol{H}$$

- interior: $F_C \sim F_H \sim l$, $F_{\dot{B}} \approx F_C$ (magnetic diffusion negligible), $F_{\dot{B}} \sim l$
- **●** CMB: $F_C \sim F_H \sim l$, $F_C \approx F_H$ (C and H cancel to leading order), $F_{\dot{B}} \sim l^2$
- **●** H is important \Rightarrow frozen-flux argument is not applicable in explaining $\tau \sim l^{-1}$ at CMB

Summary

- scaling of $\tau(l,r)$ with l observed outside the outer core is different from that in the interior
- for the large scales:

$$\tau \sim l^{-0.5}$$
, in the interior $\tau \sim l^{-1}$, at the CMB

the transition occurs within a boundary layer under the CMB

- \bullet time variation of B_{Tor} in the interior is hidden from surface observation
- for the large scales, $F_{\dot{B}}$ is responsible for the transition $(\tau = \sqrt{F/F_{\dot{B}}})$
 - in the interior, induction term C dominates, $\dot{B} \approx C$ and $F_{\dot{B}} \sim l$
 - at the CMB (no-slip), balance between the induction term and magnetic diffusion leads to $F_{\dot{B}} \sim l^2$, meaning frozen-flux argument not applicable