Effective Viscosity at the Earth's Core-Mantle Boundary

Liquid Iron Viscosity

- Free Core Nutation: 10⁻¹ ~ 10⁻² m² s⁻¹ (Gwinn et al. 1986; Mathews et al. 2002; Koot et al. 2011)
- Ab inito calculations: 10⁻⁶ m² s⁻¹ (Pozzo et al., 2013; Ichikawa and Tsuchiya, 2015)

Coupling Mechanisms

- Topographic coupling (Wu and Wahr 1997; Dehant et al. 2014)
- Electromagneitc coupling (Buffett, 1992; Mathews and Guo, 2005; Deleplace and Cardin, 2006; Buffett and Christensen, 2007)
- Viscous coupling with turbulent effect —

Precession as the source of turbulence (Triana et al. 2019; Buffett 2021)

Lunar Dissipation

Solid-body tidal dissipation

Lunar Laser Ranging Experiment from the Apollo 11 mission (1969)

Dissipation at liquid-core/solid-body boundary

- Analysis of Lunar Laser Ranges: 58 84 MW (Williams et al. 2001; Williams et al. 2014; Williams and Boggs, 2015)
- Turbulence Model: *126 MW* (Sous et al. 2013)

Limitation of Global Model

Features

- Global model
- Computationally demanding

Applications

- Earth: *Re* = 500
- Moon: *Re* = *16,700*

Local Model (e.g., Buffett 2021)

Parameters

- Re = 5 ~ 700

Navier Stokes equation:

$$\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} + \frac{1}{Re} \left(2 \hat{\boldsymbol{k}}_f \times \boldsymbol{u} \right) = -\nabla P + \frac{1}{Re} \nabla^2 \boldsymbol{u}$$

Flow in the Boundary Layer

Validation

- Resolution test
- Domain height test
- Law of the wall (Tennekes et al. 1972)

Total Dissipation

Implications

Liquid Iron Viscosity

- Free Core Nutation: 10⁻¹ ~ 10⁻² m² s⁻¹ (Gwinn et al. 1986; Mathews et al. 2002; Koot et al. 2011)
- Ab inito calculations: 10⁻⁶ m² s⁻¹ (Pozzo et al., 2013; Ichikawa and Tsuchiya, 2015)
- This study: $3.5 \times 10^{-6} m^2 s^{-1}$

Coupling Mechanisms

- Topographic coupling
- Electromagneitc coupling
- Viscous coupling with turbulent effect

Dissipation at liquid-core/ solid-body boundary

- Analysis of Lunar Laser Ranges: 58 84
 MW (Williams et al. 2001; Williams et al. 2014; Williams and Boggs, 2015)
- **Turbulence Model:** *126 MW* (Sous et al. 2013)
- **Turbulence Model:** 72 84 MW (this study)

More details ...

Method

Turbulence Model (cf. Yoder 1995, Williams et al. 2001; Cébron et al. 2019)

$$\mathcal{D}_{\nu}^{\text{turb}} = -2.62 \sqrt{2} k I \Delta \Omega^{3}$$
$$k = (u_{*}/U)^{2} \cos \beta$$

Friction velocity

Veering angle

Numerical Simulation (e.g., Buffett 2021)

- Local model

Friction Velocity

Time evolution

Kinetic Energy

Two cases

Velocity Profiles

Local Dissipation

