

Combined data assimilation of airborne and ground-based GNSS ZTDs

Introduction

In this study, we aim to improve the numerical weather models (NWMs) by assimilating both airborne and ground-based GNSS ZTDs using WRF model. We obtained airborne GNSS zenith total delays (ZTDs) from an unmanned aerial vehicle (UAV) and ground-based GNSS ZTDs from static stations. We then designed various cases, including no GNSS ZTDs assimilation, only airborne GNSS ZTDs assimilated, only ground-based GNSS ZTDs assimilated and combined data assimilation of airborne and ground-based GNSS ZTDs. Finally, cases were compared among each other as well as to external data sets including ERA5 reanalysis and radiosonde.

GNSS ZTDs

- ✓ Ground-based ZTDs were obtained from static stations in postprocessing mode while airborne ZTDs were obtained from highlykinetic UAV in simulated real-time mode.
- ✓ Both processed in Precise Point Positioning (PPP) mode.

Fig.1 UAV trajectory

Tab. 1 GNSS ZTDs processing configurations

Scheme platform Observations Spatial coverage Temporal	GNSS data processing		
	Ground-based	Airborne	
platform	Crustal Movement Observation Network of China	Highly-kinetic UAV	
Observations	GPS dual frequency ion-free	BDS dual frequency ion-free	
Spatial coverage	Single point	80 km in horizontal and 3 km in vertical (Fig.1)	
Temporal resolution	300 s	0.1 s (10 Hz)	
Estimator	Least squares method (LSQ)	Square root information filter (SRIF)	
Precise Products	IGS SP3 orbits and satellite clocks	Archive IGS real-time products	
Processing mode	PPP	PPP	
Coordinates	Constant parameter	Kinetic parameter	
Software	PANDA (Shi et al. 2008)	In-house GMET	
ZTD model	Fixed stochastic model	Dynamic stochastic model (Zhang et al. 2022)	
ZTD accuracy	Around 8 mm	Around 16 mm	

Zhenyi Zhang¹, Weixing Zhang¹, Yidong Lou¹ and Mengjie Liu²

1 GNSS Research Center, Wuhan University, China 2 School of geodesy and geomatics, Wuhan University, China

WRF data assimilation (WRFDA) experiment WRF settings

- ✓ NCEP GFS products, $0.25^{\circ} \times 0.25^{\circ}$, 3 hour forecast.
- \checkmark Three domains, with spatial resolution of 9 km, 3 km, and 1 km (Fig. 2a).

Fig.2 WRF experiment settings

WRFDA settings

- ✓ Ground-based GNSS ZTDs: six stations at 01:00 UTC (**Fig. 2b**).
- ✓ Airborne GNSS ZTDs: thinned to Green 10 min, blue 5 min, and yellow 1 min (Fig. 2c) and were compensated with the ZTD temporal change based on ERA5.
- \checkmark 3D-Var method. ZTDs in 30 min before and after DA time were assimilated (Fig. 3).
- \checkmark A total of 7 cases are designed as shown in Tab. 2.

Fig.3 WRFDA procedure

Humidity gain after DA

• The specific humidity profile of the GFS-driven background and the gain for each case above all the GNSS stations are plotted in Fig. 4.

• Sub results

- a) Humidity decreased if only groundbased GNSS ZTDs were assimilated.
- b) Humidity increased if only airborne GNSS ZTDs were assimilated.
- c) Humidity increased in the low pressure layers while decreased in the upper pressure layers if both ground-based and airborne GNSS ZTDs were assimilated.

(c) Airborne GNSS ZTDs distribution

Tab. 2 WRFDA experiment design

Casa	Assimilated	GNSS ZTDs Airborne × 1 min 5 min 10 min 1 min
Case $\frac{Assimilated GN}{Ground-based}$ CTRL × G V A01 × A05 ×	Airborne	
CTRL	×	×
G	\checkmark	×
A01	×	1 min
A05	×	5 min
A10	×	10 min
GA01	\checkmark	1 min
GA05	\checkmark	5 min
GA10	\checkmark	10 min

Evaluation based on ERA5

- Bias and RMS of the ZTD error for each case are presented in Tab. 3

• Sub results

- GNSS ZTDs were assimilated.
- GNSS ZTDs were assimilated.

Evaluation based on radiosonde

- case are plotted in Fig. 5.
- Bias and RMS of the RH error for each case are presented in **Tab. 4**

• Sub results

- a) GFS-driven background over-estir
- b) RH errors were significantly decre based GNSS ZTDs were assimilated
- c) RH errors were minimum wher based and high resolution airbo were assimilated.

Summary

Acknowledgements:

This work is supported by the National Key Research and Development Program of China (Grant 2021YFC3000501), the National Natural Science Foundation of China (Grant 42174027), and the Fundamental Research Funds for the Central Universities (Grant 2042022kf1198). Authors would like to thank Beihang University, IGS, NCEP and ECMWF for providing the research datasets.

Reference:

Zhang, Z., et al. 2022: Dynamic stochastic model for estimating GNSS tropospheric delays from air-borne platforms. GPS Solutions 27(1): 39. Shi, C., et al. 2008: Recent development of PANDA software in GNSS data processing. International Conference on Earth Observation Data Processing and Analysis, SPIE.

WUHAN UNIVERSITY

Contact: zyizhang@whu.edu.cn 🈏 @GNSS_ZZY

• With ERA5 ZTD as reference, ZTD error of WRF d03 are plotted in Fig. 5.

a) ZTDs were over-estimated for GFS-driven background and further over-estimated if only airborne

b) ZTDs were under-estimated if only ground-based GNSS ZTDs were assimilated. c) The bias and RMS of ZTD error decreased if both ground-based and high resolution airborne

Tab. 3 ZTD error statistics (w.r.t. ERA5)					
Analysis	ZTD error (cm)				
Analysis	Bias	RMS			
CTRL	0.68	1.93			
G	-1.63	2.35			
A01	0.89	2.00			
A05	1.11	2.14			
A10	1.05	2.11			
GA01	-0.34	1.53			
GA05	-0.72	1.70			
GA10	-0.95	1.84			

Fig.5 ZTD error (w.r.t. ERA5)

• With radiosonde as reference, the relative humidity (RH) error profile for each ²⁰⁰

	Tab. 4 RH error statistics			
	Analysis	RH error (%)		- ,
mated DU		Bias	RMS	- :
пацей кп.	CTRL	9.56	17.08	-
eased if ground-	G	4.79	13.35	I
ed.	A01	8.79	16.19	
n both ground	A05	10.10	17.57	
n both ground-	A10	10.05	17.53	
orne GNSS ZTDs	GA01	3.12	11.71	
	GA05	4.12	12.57	
	GA10	4.32	12.75	_

Combined data assimilation of ground-based and airborne GNSS ZTDs can significantly improve the accuracy of numerical weather models in terms of ZTD and humidity.

Combined data assimilation has better performance than merely assimilating ground-based or airborne ZTDs, where airborne ZTDs could help further decrease the humidity bias.

✓ When assimilating airborne ZTDs, a higher spatial-temporal resolution leads to a larger improvement.