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Existing Capability: Non-seamless

New Capability: Seamless
Seasonal Streamflow Monthly Forecasts

Subseasonal Streamflow Daily Forecasts

0

Daily forecasts for 0-30 day lead time, Available at single time scale/lead time

Seamless forecasts with consistent quality at (monthly) _
range of lead times and aggregation time Cannot be reliably aggregated/disaggregated

scales (daily/weekly/monthly) to longer/shorter lead times




Practical Benefits of Seamless vs Non-Seamless Forecasting

Seamless forecasts can inform decisions at a range of time scales

* Flood warning (up to 1 week)

* Managing hydropower systems (7 and 15 days)

e Managing water supply reservoirs where forecast volumes over lead times of weeks/months
* Non-seamless only works at single time scale

Seamless daily forecasts integrate into real-time decision-making models

¢ River system models run at daily time timesteps => Seamless daily forecasts easily used as inputs
e Enables quantify impacts of forecasts
* Non-seamless seasonal models cannot be used as input => only used ‘qualitatively’

Seamless forecasts simplify forecasting systems

e A single seamless product can serve a range of forecast requirements at different time scales
* Non-seamless models require multiple forecasting products at different time scales

Key Question: Do seamless forecasts (with all these extra benefits) produce
similar performance as non-seamless forecasts at same time scale
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Seamless Subseasonal Daily Forecasts: MUTHRE

Produce daily subseasonal streamflow forecasts with high quality
performance for range of lead times (0-30 day) and time scales (daily to
monthly)

Key innovation
MuTHRE: Multi-temporal hydrological residual error model

e Seasonality: Errors vary systematically by month
* Dynamic Biases: Errors vary yearly, due to non-stationarity

* Extreme errors: Occasional very large errors, poorly represented by Gaussian distribution
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Overview of Forecasting Approaches
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Seamless Subseasonal Daily
Forecasts: MUTHRE

Non-Seamless Seasonal
Forecasts: Monthly QPP

Key Question: Do seamless forecasts
produce similar performance as non-
seamless forecasts at monthly time scale

Expectation:
Non-seamless Forecasts would perform better as

they only have on ‘job’ to do: produce forecasts
at monthly time scale used for calibration
Seamless Subseasonal: Produce forecast at range
of lead times and aggregation times scales



Forecast Evaluation Approach:
Comprehensive and Systematic

* Eleven key unregulated catchments in Murray-Darling Basin

. >60% inflow to major storages

 Range of commonly used metrics to capture key aspects of
forecast performance
* Reliability, Sharpness, Volumetric Bias, CRPS
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* Range of time scales/stratified evaluations to assess
performance consistency
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* Leave-one-out Cross Validation Procedure
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Key Outcomes: Daily Forecasts (MUTHRE)
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* Reliable and sharp forecasts across a range of lead times and
aggregation time scales (daily/monthly) and stratifications
(month/year)

e Monthly QPP cannot produce daily forecasts
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Key Outcomes:
Monthly Forecast Time Series

MuTHRE Monthly QPP
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e Seamless daily forecasts from MUTHRE aggregated to monthly time

_  scales produce similar results to non-seamless Monthly QPP
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Key Outcomes: Monthly Forecasts Metrics

Overall Stratified by month Stratified by year
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e Seamless daily forecasts from MUTHRE aggregated to monthly time
- scales produce similar results to non-seamless Monthly QPP
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Summary

Daily seamless subseasonal forecasts from MUTHRE provide
assentially the same performance as the non-seamless Monthly
PP

Seamless forecasts provides a wide range of practical benefits
over non-seamless forecasts

Modeller can proverbially ‘have their cake and eat it too”

Key finding: Seamless forecasting is not only viable buta
preferred choice for future research development and practical
adoption in streamflow forecasting

Any question: email mark.thyer@adelaide.edu.au
See further details in journal paper:

Mclnerney et al, 2022, HESS, Seamless streamflow forecasting at daily to monthly scales: MUTHRE lets

you have your cake and eat it too, https://doi.org/j68c
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