

Ensemble Machine Learning Approach for PM_{2.5} Reconstruction using MERRA-2 and Long-term Analysis (1980-2021) for India

Vikas Kumar, Vasudev Malyan, Manoranjan Sahu, Basudev Biswal

Indian Institute of Technology Bombay, Powai, Mumbai India-400076

INTRODUCTION

- Air pollution is a global concern causing 7 million premature deaths and costing the global economy ~\$2.9 trillion every year (WHO, 2021; Health Effects Institute, 2019; IQAir, 2020).
- According to the report by CPCB, India requires ~ 4,000 air quality monitoring stations due to its size, population, and worsening air pollution, but has only ~ 300 continuous

monitoring stations (Sengupta, 2003).

In the recent years, artificial intelligence and machine learning, have been applied to construct datasets of near-surface PM_{2.5}, such as neural network (Di et al., 2017), random forest (RF) (Li et al., 2020; Wei et al., 2019; Wei et al., 2020; Wei et al., 2020; Wei et al., 2022), the fast space-time Light Gradient Boosting Machine (LGBM) (Wei et al., 2021a; Zhong et al., 2021), and Extreme Gradient Boosting (XGBoost) (Li et al., 2020; Chen et al., 2019).

The MERRA-2 products developed by the Global Modeling Assimilation Office (GMAO) (Randles et al., 2017) provide relative long-term surface $PM_{2.5}$ mass concentration since 1980s.

LITERATURE REVIEW

Reference	Region	Methodology	Temporal Resolution	Performance (R ²)
Provençal et al. (2017)	Israel, Taiwan	Formula	Hourly	0.07-0.31
Huang et al. (2018)	China	ML (RF)	Daily	0.88
Song et al. (2018)	China	Formula	Hourly	0.35
Xiao et al. (2018)	China	ML (Ensemble)	Daily	0.85
He et al. (2019)	China	Formula	Daily	0.1-0.34
Carmona et al. (2020)	Mexico	NN	Monthly	0.53-0.81
Dey et al. (2020)	India	Formula	Daily	0.8
Ma et al. (2020)	China	Formula	Daily	0.09-0.66
Navinya et al. (2020)	India	Formula	Daily	0.36
Bali et al. (2021)	India	Formula	Hourly	NR
Gupta et al. (2021)	Thailand	ML (RF)	Hourly	0.9
Yin (2021)	China, Japan, Korea	Formula	Daily	0.69
Jin et al. (2022)	Global	Formula	Daily	0.1
Ma et al. (2022)	China	ML (LightGBM)	Daily	0.26 – 0.61

- Back tracing to identify region-specific emission extensive activities through critical analysis of historical data.
- Dense spatial monitoring network to establish regulations and policy frameworks.
- Study of pollution episodes and seasonal variation of $PM_{2.5}$

Formula: $PM_{2.5} = [DUS1] + [SS] + [BC] + 1.4 \times [OC] + 1.375 \times [SO_4]$ ML: Machine Learning, RF: Random Forest, NN: Neural Network

MODELLING RESULTS

Figure 2. Performance of ML prediction models

Table 1. Comparison of Measured PM_{2.5} with calculated and predicted PM_{2.5_Calculated} PM_{2.5_Predicted} **Metrics** 1846469 1846469 n \mathbf{R}^2 0.27 0.74 RMSE 52.13 34.16 MAE 21.79 32.63 0.69 0.90 IoA

ground level concentration.

Exposure assessment across Indian states to assess air pollution exposures without extensive PM_{2.5} monitoring locations, to adopt preventive public health measures.

REFERENCES

- Provençal S., Buchard, V., Silva, A. M. da, Leduc, R., Barrette, N., Elhacham, E., & Wang, S.-H. (2017). Evaluation of PM2.5 Surface Concentrations Simulated by Version 1 of NASA's MERRA Aerosol Reanalysis over Israel and Taiwan. Aerosol and Air Quality Research, 17(1), 253–261. https://doi.org/10.4209/aaqr.2016.04.0145
- Song, Z., Fu, D., Zhang, X., Wu, Y., Xia, X., He, J., Han, X., Zhang, R., & Che, H. (2018). Diurnal and seasonal variability of PM2.5 and AOD in North China plain: Comparison of MERRA-2 products and ground measurements. Atmospheric Environment, 191, 70–78. https://doi.org/10.1016/j.atmosenv.2018.08.012
- Ma, J., Zhang, R., Xu, J., & Yu, Z. (2022). MERRA-2 PM2.5 mass concentration reconstruction in China mainland based on LightGBM machine learning. Science of the Total Environment, 827, 154363. https://doi.org/10.1016/j.scitotenv.2022.154363.

PUBLICATIONS

OBJECTIVES

This study aims to address the following objectives:

- A machine learning model to estimate ground level PM_{2.5} concentration using MERRA-2 satellite data
- Comparison with empirical formula PM_{2.5} concentration estimates
- A long-term state wise trend analysis (1980-2021) for India
- Identification of major aerosol component sources in India

Figure 3. Comparison of $PM_{2.5}$ measured with predicted and calculated

Table 2. Summary of Measured, Calculated and Predicted $PM_{2.5}$					
Metric	Calculated	Measured	Predicted		
Count	1846469	1846469	1846469		
Mean	52.66	63.31	64.30		
SD	39.04	60.89	52.50		
Min	0.91	0.07	1.79		
25%	26.76	23.50	29.33		
50%	43.51	44.00	48.68		
75%	67.33	79.99	79.07		
Max	1255.33	434.00	407.36		

- Kumar, V., Malyan, V., & Sahu, M. (2022). Significance of Meteorological Feature Selection and Seasonal Variation on Performance and Calibration of a Low-Cost Particle Sensor. Atmosphere, 13(4), 587. https://doi.org/10.3390/atmos13040587
- Kumar, V., Sahu, M., & Biswas, P. (2022). Source Apportionment of Particulate Matter by Application of Machine Learning Clustering Algorithms. Aerosol and Air Quality Research, 22, 210240. https://doi.org/10.4209/aaqr.210240
- Kumar, V., & Sahu, M. (2021). Evaluation of nine machine learning regression algorithms for calibration of low-cost PM2.5 sensor. Journal of Aerosol Science, 157, 105809. https://doi.org/10.1016/j.jaerosci.2021.105809
- Sahu, M., Malyan, V., & Mayya, Y. S. (2021). Technologies for Controlling Particulate Matter Emissions from Industries. In S. P. Singh, K. Rathinam, T. Gupta, & A. K. Agarwal (Eds.), Pollution Control Technologies: Current Status and Future Prospects (pp. 253–290). Springer. https://doi.org/10.1007/978-981-16-0858-2_12