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A B S T R A C T   

Increased erosion related to climate and/or land cover change has adverse impacts on terrestrial and aquatic 
ecosystems. Mapping of erosion hotspots improves our ability to identify and potentially remediate the most 
active erosion sources. The topical savannas of the Great Barrier Reef catchments, in northeast Australia, are 
generating excessive sediment yields, primarily from gully erosion. To reduce the adverse impacts on marine 
ecosystems, there is an urgent need to identify priority erosion hotspots and implement mitigation measures. 
While repeat airborne LiDAR surveys allow subtle topographic change detection, they are cost-intensive for 
catchment-scale applications and their applicability is constrained by data avalability and detection treshold of 
ground level change. In contrast, satellite-based radar imagery can allow large scale tracking of geomorphic 
change at high temporal resolution. Here we apply a new method based on Sentinel-1 C-band radar images and 
Coherence Change Detection (CCD), where large stacks of interferometric coherence images are subdivided with 
rain gauge time-series for separation of erosion-rich and erosion-free coherence information. After correcting the 
former with the latter, the resulting corrected coherence maps are compared with differential elevation models 
derived from multitemporal LiDAR, regional scale gully delineation maps, maps of gullying potential and in-situ 
field verification. Our results demonstrate the promising potential of this technique in detecting gully erosion 
hotspots. The coherence loss indicating erosion/deposition is well detected in wide gully morphologies, however, 
the line-of-sight angle does not allow penetration into narrow linear gullies. Further, CCD detects sheetwash or 
rill erosion occurring in areas identified as at risk of gully expansion, which is commonly below detection 
threshold for multitemporal LiDAR datasets. When used with LiDAR-derived geomorphic change mapping and 
gullying potential maps, CCD allows identification of gully erosion dynamics and forecasting gully evolution and 
creation, which is critical for supporting mitigation measures.   

1. Introduction 

At geologic timescales, cycles of erosion and deposition are key 
drivers of landscape evolution that shape the Earth’s surface (Dietrich 
et al., 2013; Dietrich and Perron, 2006; Phillips, 2021; Summerfield, 
2014). The last few decades of anthropogenic activities have signifi-
cantly altered this process of sediment generation, transportation, and 
deposition (Steffen et al., 2015, 2018). Key anthropogenic drivers of 
erosion include land use change, dam construction and water abstrac-
tion/diversion (Kondolf, 1997; Kondolf et al., 2018, 2022; Qin et al., 

2019; Vorosmarty, 2000). Against the backdrop of changing climate, 
this dynamic cycle of landscape erosion has further accelerated with 
deleterious effect on hydrological, geomorphic, and ecological river 
health. The dynamics of this terrestrial erosion determines the fate of the 
aquatic water bodies into which they eventually drain (Bainbridge et al., 
2021; Bartley et al., 2015; Kondolf et al., 2022; Tangi et al., 2022). 
Therefore, for sustainable management of terrestrial and aquatic envi-
ronmental assets, there is an urgent need to identify hotspots of erosion 
for targeted management practices. 

Typically, landscape erosion is assessed using empirical and physical 
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models. These models often integrate remotely sensed datasets with 
field observations to assess catchment-scale forms and processes 
(Coulthard et al., 2013; McCloskey et al., 2021; Schmitt et al., 2018). 
Recent advances in remote sensing techniques, improved public avail-
ability of spatial datasets, and enhanced computing resources have 
enabled such landscape assessment at unprecedented scales (Vrieling, 
2006; Piégay et al., 2020). Further, availability of multi-temporal 
datasets (repeated LiDAR based Digital Elevation Models and satellite 
imagery) has opened avenues for understanding the dynamic cycle of 
erosion and deposition that can be used for tracking the active prove-
nance and fate of sediment (Schmitt et al., 2016; Tangi et al., 2022). 

Radar imagery products, particularly interferometric coherence im-
ages (Zebker and Villasenor, 1992), allow identification of subtle 
changes of the ground’s scattering properties. Erosion and deposition 
changes microtopography, which modifies the structure of scattering 
targets and changes the radar signal amplitude and phase. This leads to a 
reduced coherence value between the initial and the eroded state for the 
corresponding pixels. Thus, information related to erosion/deposition is 
concentrated in coherence images formed by comparing pairs of images 
acquired before and after geomorphic change events. Hence it can be 
highlighted through a range of techniques referred to as Coherence 
Change Detection (CCD). Typically, coherence information related to 
erosion appears with different temporal behaviour in coherence image 
time-series than the transient coherence loss due to soil moisture (Scott 
et al., 2017; Jordan et al., 2020) and with different spatial patterns than 
anthropogenic disturbances (e.g., Liu et al., 2001, in which geophysical 
survey lines were identified). In some cases, aeolian erosion processes 
and water-facilitated weathering can be discriminated in a coherence 
image stack constrained by meteorological data (Schepanski et al., 
2012). 

Interferometric SAR and CCD techniques have been applied in 
several regions of the world for erosion mapping efforts: in Algeria (Liu 
et al., 2001), Morocco (Schepanski et al., 2012), Chile (Cabré et al., 
2020), Mongolia (Kim et al., 2020, 2021), Peru (Lefort et al., 2004); 
Spain (Liu et al., 1999, 2004), Argentina (Olen and Bookhagen, 2020), 
Iceland (Smith et al., 2000), the USA (Wegmuller et al., 2000) and China 
(Jiang et al., 2021). Earlier studies used radar data from the first (e.g., 
ERS) and second (e.g., ENVISAT) generations of radar satellites and 
typically interpret the coherence of few selected interferometric pairs 
(Liu et al., 1999, 2001, 2004; Lefort et al., 2004, Schepanski et al., 
2012). These studies were limited by the low repeat path frequency of 
the 1st and 2nd generations of radar satellites (typically 35 or 24 days) 
and by the limited spatial and temporal coverage available. Most recent 
studies take advantage of the higher repeat path frequency (6 to 12 days) 
and the global spatial coverage of Sentinel-1 (Cabré et al., 2020; Olen 
and Bookhagen, 2020; Kim et al., 2020) to improve characterisation of 
erosion in time and space. Several of the CCD studies have used vali-
dation data to help interpret the signal decorrelation highlighted by 
coherence images, which can be affected by any kind of surface distur-
bance that occurred between the two acquisition dates. This includes 
difference of Digital Elevation Models (DEM; Kim et al., 2020), optical 
imagery (Liu et al., 2001, 2004; Cabré et al., 2020; Olen and Bookhagen, 
2020), meteorological data (Cabré et al., 2020; Schepanski et al., 2012; 
Olen and Bookhagen, 2020), geomorphological maps (Liu et al., 2004; 
Olen and Bookhagen, 2020) and field observation (Cabré et al., 2020). 
While few applications of deformation-mapping based on Interfero-
metric SAR (InSAR) have been published in Australia in the recent years 
(Castellazzi and Schmid, 2021; Castellazzi, 2021; Parker et al., 2021a,b), 
there is no publication on InSAR CCD over Australia available to this 
date. Further, there are no studies that have used CCD for detecting 
erosion hotspots in gullied landscapes. Although CCD is not a novel 
technique, its application for detecting geomorphic change in gullied 
landscapes is unexplored to this date. 

Recent radar imagery products such as Sentinel-1 are publicly 
available over any location in the World. Over most regions, time-series 
of 150–200 repeat-path images acquired in the period 2016–2021 are 

available in at least one orbital direction (descending or ascending). This 
allows several options of connection-graph designs to create stacks of 
interferometric coherence images (Fig. 1), each related to a certain 
computing effort and allowing different observations. Most erosion 
studies (e.g., Olen and Bookhagen, 2020) follow a time-line design 
(Fig. 1A), where coherence images are only calculated between 
temporally adjacent radar images. This design implies a relatively low 
computer effort and allows coherence observations at the minimum time 
intervals. Studies characterising the coherence decay and its deviation 
(for identification of loss beyond a normal background coherence decay 
curve) use a single-master approach (Fig. 1B, e.g., Jordan et al., 2020). 
Full or SBAS stacks (Fig. 1C-D) are commonly used in interferometric 
ground deformation mapping (e.g., SBAS stack, in Australia: Castellazzi 
and Schmid, 2021) and allows a varying degree of redundancy useful to 
extract noise and artefacts via stacking (Berardino et al., 2002; Bui et al., 
2020). The benefits of such coherence stack design have not been tested 
for erosion mapping to date. 

There is considerable interest in identifying and treating the major 
sources of fine sediment and associated particulate nutrients draining 
from land-based sources to the Great Barrier Reef (GBR) lagoon 
(Waterhouse et al., 2017). Gully erosion is the major erosion process 
responsible for the excess sediment delivery to the GBR (Wilkinson et al., 
2013; Bartley et al., 2014; McCloskey et al., 2021), and the area occu-
pied by gullies is estimated to have increased ~10-fold since European 
settlement in parts of North-eastern Australia (Shellberg et al., 2010). 
The increase in gully erosion is linked to anthropogenic activities such as 
over-grazing and mining, particularly when located on vulnerable soil 
types (Bartley et al., 2018; Lewis et al., 2021). 

Evaluating the rates of gully erosion in the GBR catchments has been 
assessed using a range of techniques including erosion pins (Wilkinson 
et al., 2018), photogrammetry (Koci et al., 2017), terrestrial laser 
scanning (Goodwin et al., 2017; Kinsey-Henderson et al., 2021) and 
airborne LiDAR (Khan et al., 2023). Despite these methods being useful 
for assessing fine scale erosion processes, they have two important 
limitations: (1) the small spatial scale over which they can be applied, 
generally restricting assessments to individual gullies or small sub- 
catchments and (2) the availability of LiDAR datasets and the cost to 
acquire new ones. To help identify and target areas of active gully 
erosion for rehabilitation prioritisation (Darr and Pringle, 2017), as well 
as provide baseline assessments of active gully erosion over whole 

Fig. 1. Typical strategies for creating coherence image stacks from radar image 
time-series. Each segment corresponds in a coherence image obtained between 
two radar acquisitions. This example contains only 5 images, with connection 
strategies creating 4, 4, 10 and 7 coherence images, respectively. Note that the 
quantity of coherence images produced by strategy D depends on the temporal 
and spatial baseline thresholds used. 
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catchments, there is a need to develop techniques that can be applied 
over larger spatial scales (> 10,000 km2). 

The recent, global availability of open-access Sentinel-1 radar im-
agery is a game-changer, as it allows CCD techniques to be implemented 
over large-scales, creating an opportunity for regional to continental- 
scale erosion mapping. In GBR catchments, sediment tracing using 
fallout radionuclides has identified gully erosion as a larger contributor 
of fine sediment to rivers and marine systems than surface soil erosion 
(Wilkinson et al., 2013). However, identifying and distinguishing active 
from inactive gully erosion has been challenging over large spatial areas. 
Thus, this study presents an ideal case to test the capability of radar CCD 
techniques based on Sentinel-1 data. If successful, the method may 
enable the identification of active gully erosion over entire catchments 
in the GBR. 

There are two main aims of this study. Firstly, to test a systematic 
approach for CCD-based detection of erosion/deposition at temporal 
scales ranging from individual rain events to several years. Secondly, to 
understand the advantages and limitations of the technique and its value 
added to replace or complement existing erosion mapping techniques. 
This is supported by a series of auxiliary observation including (1) 
LiDAR-derived DEMs of Difference, (DoD) erosion rates (2) regional 
scale gully delineation, (3) gullying risk maps derived from several 
existing gully sites with independent, LiDAR-derived validation data and 
(4) in-situ field validation. The independent field sites selected for this 
study represent a range of gully shapes and morphologies from small 
linear hillslope gullies of width 5–25 m to large wide gullies of width 
150–300 m in deep alluvium (Thwaites et al., 2022), thereby providing a 

useful test of this technique for a range of erosional features. 

2. Study areas 

The two study areas are tropical savannah environments, located 
within the Burdekin Catchment, which extends over ~130,000 km2 and 
drains into the Great Barrier Reef (GBR) Lagoon south of Townsville on 
the east coast of Australia (Fig. 2). Study area 1 is located ~20 km 
(north-east corner) South-west of the City of Townsville, Queensland, 
Australia, and extends as far as 115 km (south-west corner). Study area 2 
is located ~100 km south-east of Townsville and extends as far as 215 
km. For both areas, the annual precipitation is in the range 500–800 
mm/yr, with a strong east-west gradient and decreasing annual pre-
cipitation rates progressing inland. The area has a hot, semi-arid climate 
with two seasons: a short, wet season focused on December to March and 
a long, warm, and dry season the rest of the year (Jarihani et al., 2017). 
Bare soil, low-density eucalypt open woodlands and tropical savannah 
are the dominant land cover types (Fig. 3). 

The Burdekin catchment is the largest contributor of anthropogenic 
derived fine sediment to the GBR (Bainbridge et al., 2018; Mariotti et al., 
2021), and has some of the highest gully densities and cross-sectional 
areas of any of the GBR catchments (McCloskey et al., 2021). The sites 
selected for this study have been part of other existing long-term 
monitoring assessments of gully erosion (Wilkinson et al., 2018) and 
gully rehabilitation effectiveness (e.g., Koci et al., 2021) and had suit-
able gully mapping and erosion data from lidar DEM analysis to enable 
technique validation (Walker et al., 2020; Khan et al., 2023). 

Fig. 2. Location of the two study areas, location of the Burdekin catchment (A) and location of the study area in the Burdekin catchment (B), with the main drainage 
lines. Presentation of the radar imagery processing footprints (C, D) with two cloud-free, ‘barest earth’ optical images derived from Roberts et al. (2019). 
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3. Materials and methods 

3.1. Radar imagery and processing 

Sentinel-1 C-band Interferometric Wide (IW) Synthetic Aperture 
Radar (SAR) image tiles were downloaded from the Alaskan Satellite 
Facility (ASF) web portal. Radar imagery processing was performed 
using ENVI 5.6 and SARSCAPE 5.6. Hundreds of Sentinel-1A image tiles 
corresponding to two adjacent descending swaths and to 156 acquisition 
dates were downloaded (Table 1). For both swaths, tiles were merged, 
and one spatial subset was extracted for each swath (Fig. 2; Table 1). A 
multilooking factor of 3/1 in Range/Azimuth was applied to improve 
the signal-to-noise ratio and produce images with near-square pixel 
ground footprints with a resolution in the range [15–20] meters. All 
radar image pairs with temporal baselines of equal or below 60 days, 
and with spatial baselines below 3% of the critical baseline were created, 
following a typical SBAS connection graph design (Berardino et al., 
2002; Fig. 1). The interferometric coherence was computed for each 
selected image pair using a typical 5 × 5 pixel windows and the resulting 
coherence maps were projected onto 20-m georeferenced rasters using 
the AW3D30 Digital Elevation Model v3.1 (Takaku et al., 2020). The 
end-product of the radar processing is two georeferenced interfero-
metric coherence data cubes with 755 and 758 coherence maps. 

3.2. Precipitation data 

Daily precipitation time-series from in situ rain gauges at three lo-
cations (Table 2) were downloaded from the Australian Bureau of 
Meteorology’s Climate Data portal (BOM; http://www.bom.gov.au/ 
climate/data/). The datasets were manually selected from all available 
rain gauge data for their completeness during the study period (100% of 
the days covered) and their geographical location inside the two study 
areas. Two rain gauges time series are used for the study area 1, as they 
are located at the extreme North and South end of the area. Only one 
rain gauge dataset is used for the study area 2, located close to its center 
(Fig. 4). 

3.3. Validation data 

To validate the results, four types of data and observations are 
compared with results from the CCD technique: (1) DEMs of Difference 
(DoD), (2) LiDAR-based and in situ gully delineation (GD), (3) gullying 
potential maps (GP), and (4) in-situ field observations (FO). A summary 
of these datasets, including the rain gauges, is presented in Table 2. A 
detailed description of the three DoD datasets is presented in Table 3, 
and maps with locations of the datasets across the two study areas is 
presented in Fig. 3. 

Fig. 3. Photos of the active erosional features represented by contrasting gully types in the study area 2: (A) Linear gully at Strathbogie, (B) Alluvial gully and gullied 
landscape viewed from above at Glen Bowen, (C) Linear-alluvial gully at Mount Wickham. Photos by Fruition Environmental and NQ Dry Tropics. 

Table 1 
Characteristics of the radar image time-series used in this study.  

Study areas Sentinel-1 orbital track Time-series start/end Number of images/coherence maps Extent (km2) 

1 - Fig. 2C 89 2016-08-01 2021-09-28 156/755 5006 

2 - Fig. 2D 16 2016-07-27 2021-09-23 156/758 7015  
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Table 2 
Type, location, coverage, and source of auxiliary data used in this study.  

Data type and location name 
(Fig. 3) 

Study area Lat/Lon coordinates Approx. coverage Source 

Rain Gauges (RG) 
Charters Towers Airport (34084) 1 − 20.05/146.27 Point data BOM 
Woolshed (33307) 1 − 19.42/146.54 Point data BOM 
Strathmore (33082) 2 − 20.50/147.63 Point data BOM 
DEM of Difference (DoD) 
Main Creek 1 − 19.82/146.57 15 km2 Unpublished analysis 
Mt Wickham 2 − 20.47/147.41 0.03 km2 Khan et al., 2023 
Glen Bowen 2 − 20.56/147.59 0.03 km2 Khan et al., 2023 
Strathbogie 2 − 20.20/147.59 0.19 km2 Khan et al., 2023 
Regional-scale Gully Delineation (GD) 
Red Hill Creek 2 − 20.33/147.27 25 km2 Walker et al. (2020, 2022) 
Collinsville 2 − 20.67/147.79 19 km2 Daley et al. (2021) 
Gullying Potential (GP) 
Weany creek 1 1 − 19.89/146.53 6 km2 Walker et al. (2020, 2022) 
Weany creek 2 1 − 19.83/146.57 6 km2 Walker et al. (2020, 2022) 
Bogie 2 − 20.15/147.50 15 km2 Walker et al. (2020, 2022) 
Field Observation (FO) 
Weany creek 3 1 − 19.89/146.515 2 km2 Field survey in October 2022  

Fig. 4. Location of the rain gauges and of the validation datasets used in Study area 1 (A) and 2 (B). Nomenclature: RG: Rain Gauges; DoD: DEM of Difference; GD: in 
situ Gully Delineation, GP: Gullying Potential from Walker et al. (2020, 2022). (B) is rotated anticlockwise (− 15 degrees) for presentation. 

Table 3 
Soil, lithology, precipitation, or other contextual information for the three DoD datasets used to validate the results over the Study area 2.  

DoD Site Main Creek Mt Wickham Glen Bowen Strathbogie 

Study area 1 2 2 2 

Gully characteristics 
Linear: Gully area focused on a distinct 
narrow trunk stream along the hillslope 
with minor secondary channels 

Linear-alluvial: Wide gullies 
along distinct trunk stream 

Alluvial: Wide gully area along 
trunk stream and multiple 
secondary channels 

Linear: Gully area focused on a distinct 
trunk stream along the hillslope with 
minor secondary channels 

Soils Red Chromosol Hypernatric Brown Sodosol Sodic Hypocalcic Red Dermosol Black Vertosol 
Geology Granodiorite Granite and Granodiorite Granodiorite Granite, Basalt 
Terrain (% slope 

property) 
3% 10% 3–4% 6–7% 

Average annual long- 
term rainfall (mm) 

~780 mm ~600 mm ~ 880 mm ~ 750 mm 

Vegetation over-story 
Widely spaced Narrow-leafed Ironbark 
and Bloodwood 

Widely spaced Narrow-leafed 
Ironbark and Bloodwood +
Popular gum 

Widely spaced Narrow-leafed 
Ironbark and Bloodwood 

Widely spaced Narrow-leafed Ironbark 
and Bloodwood 

Vegetation 
groundcover Dominated by native perennial grasses Dominated by Indian Couch Dominated by Indian Couch Dominated by Indian Couch 

Length and dates of 
DoD (dd/mm/ 
yyyy) 

~7.83 years 
07–08 November 2013 and 07 August 
2021 

~2.83 years 
13–19 September 2018 
and 19–20 July 2021 

~2.83 years 
13–19 September 2018 
and 19–20 July 2021 

~2 years 
26–27 July 2019 
and 19–20 July 2021 

DEM resolution 2013 & 2021–0.5 m 2018 & 2021–0.5 m 2018 & 2021–0.5 m 2019 & 2021–0.5 m 

1st DEM accuracy 
Horizontal accuracy of 0.80 m & vertical 
accuracy of 0.30 m  

Horizontal accuracy of 0.80 m 
& vertical accuracy of 0.30 m  

Horizontal accuracy of 0.80 m & 
vertical accuracy of 0.30 m  

Horizontal accuracy of 0.80 m & 
vertical accuracy of 0.30 m  

2nd DEM accuracy 
Horizontal accuracy of 0.3 m & vertical 
accuracy of 0.1 m 

Horizontal accuracy of 0.3 m 
& vertical accuracy of 0.1 m 

Horizontal accuracy of 0.3 m & 
vertical accuracy of 0.1 m 

Horizontal accuracy of 0.3 m & vertical 
accuracy of 0.1 m  
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3.4. Approach 

InSAR coherence maps are interpreted considering three main 
influencing contributors to the total interferometric coherence (γtot) 
calculated from two radar image acquisitions (Eq. 1), similarly to Jordan 
et al. (2020) and first expressed by Zebker and Villasenor (1992). This 
study being based on imagery from a 3rd generation SAR sensor with 
relatively small spatial baselines and well-controlled radiometric pa-
rameters, their influence is considered negligeable. 

γtot= γb+ γt+ γp (1) 

Where γb is the background coherence loss corresponding to the 
typical decay of coherence over time due to time-dependant, 

progressive, structural changes of surface roughness such as vegetation 
growth, γt is the transient coherence loss related to difference in soil 
moisture at the two acquisition times, and yp is the permanent coherence 
loss related to sudden changes of surface roughness and micro-
topography, i.e., soil erosion/deposition. γb follows an inverse loga-
rithmic decay curve (e.g., in Australia: Castellazzi, 2021), with a 
progressive coherence decrease with image pairs of increasing temporal 
baselines (e.g., when using a single primary image stack design; Fig. 1C). 
γt is fully recoverable and depends on the transient nature of soil 
moisture anomalies. yp is a permanent coherence loss, as surface soil 
structure and roughness changes are not time-dependant and are unre-
coverable. Using an InSAR stacking approach, this study proposes to 
extract the contribution of γb by using selected pairs with similar tem-
poral baselines, isolating coherence images with similar yp signals from a 
stack and correcting for the temporally varying influence of γt via 
stacking. 

The approach divides the coherence stack into two sub-stacks: 1) an 
erosion-rich stack and 2) an erosion-poor stack (Fig. 5). The erosion- 
poor stack is used to correct the erosion-rich stack, removing the 
contribution of γb and isolating the contributions of γp and γt. Practi-
cally, the first step consists in selecting erosion-rich coherence images, 
creating an ‘Erosion Sub-stack’ (ES). The ES comprises all connections 
with dates encompassing a particular precipitation event. This stack is 
influenced by all three contributors γb, γt and γp. In the second step, a 
‘Dry Sub-stack’ (DS) is identified by selecting all coherence images with 
no influence from rain events; it is assumed that this stack is only 
influenced by γb and γt. The DS corresponds to all ‘dry conditions’ 
coherence images, they are identified in the coherence stack using a 
criterion based on total precipitation before the first radar image 
acquisition and in between the two acquisitions. The criterion corre-
sponds to a cumulative rain below 1% of the time-series maximum in the 
period starting 5 days prior to the first acquisition date and ending at the 
date of the last acquisition. It is important to note that for validation 
with auxiliary datasets measuring erosion between two dates, such as 
DoD data, the selection criterion for the ES stack is slightly modified: the 
ES is formed by a selection of coherence images between the two DoD 
dates which were not selected to form the DS. 

The conversion from coherence images to maps of potential erosion 
hotspots follows two steps. First, all coherence images within an ES (i.e., 
a selection of coherence image containing erosion information) are 
corrected for γb by subtracting the average of all coherence maps with 
similar temporal baselines found within the DS. In other words, the 
average map calculated from all coherence images with N-days temporal 
baseline in the DS is subtracted to each coherence map with N-days 
temporal baseline in the ES. This strategy is applied to all temporal 
baselines found in the ES (all of the following: N = 12, 24, 36, 48 and 60- 
days). This step leads to a γb-corrected ES, referred to as ESc thereafter. 
Second, to define coherence loss anomalies, each coherence map in the 
ESc is divided by the standard deviation of all coherence maps with 
similar temporal baselines in the DS. This leads to the creation of 
coherence anomaly maps, expressed in a unitless term, referred to as ‘α 
value’ thereafter. Finally, an averaged coherence anomaly map is 
extracted by averaging all α-value maps. Averaging several observations 
aims at correcting for γt, the time-dependant component related to soil 
moisture changes. 

4. Results and discussion 

4.1. Identifying major precipitation events and dividing the coherence 
stacks 

Prior to dividing the coherence image stack into sub-stacks, a char-
acterisation of potential erosion-generating precipitation events is 
necessary. The daily precipitation time-series are used to constrain such 
analysis (Fig. 6 and S1 for Study area 2 and 1, respectively). We note that 
a major, 7-day precipitation event occurred in February 2019 in the 

Fig. 5. Workflow presented in this study. Steps related to the Erosion-rich 
coherence (i.e., with high precipitation rates between the image pairs) im-
ages isolated from the stack are shown in blue, Steps related to the dry con-
dition coherence are shown in green, and auxiliary data are shown in orange. 
(For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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Fig. 6. Precipitation time-series (A) and ranking of precipitation days (B) for study area 2. An envelope curve (orange line) based on a 31-days moving mean is used 
to highlight seasonal patterns of precipitation (A). 
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study area 1 (Fig. S1) and corresponds to the seven most rainy days 
during the study period. The 8th and the 9th most rainy days occurred at 
different times, in early 2021 and in mid-2017, respectively. 

4.2. Selection of radar image pairs 

Based on the precipitation rates between and before each radar 
image pairs, the coherence pairs are classified into four sub-stacks (Fig. 7 
for the study area 2; Fig. S2 for the study area 1). The number of con-
nections per stack and the precipitation rates occurring between images 
forming each pair are presented in Table 4. In total 80 and 117 ‘dry 
pairs’ were selected for study area 1 and 2, respectively, to form the dry 

stacks (DS). Such image pairs are expected to be erosion-free and to 
provide an accurate representation of the background coherence (γb) 
and its variability, both useful for correcting coherence images con-
taining erosion information. 

The number of dry connections is related to the total number of 
connections, the climate of the study area, and the criterion used to 
identify connections as dry. On the other hand, the number of connec-
tions for each major rain event sub-stacks are solely related to the 
density of the graph. With a maximum temporal baseline of 60 days, 15 
connections were found to temporally intercept each rain event. They 
contain similar erosion information (γp) and varying moisture infor-
mation (γt). Such connection graph design guarantees an efficient 

Fig. 7. Connection graph subsets for study area 2. Black dots represent radar acquisitions positioned on the time vs. perpendicular baseline plot, blue lines represent 
possible InSAR coherence pairs within the criteria (maximum temporal and perpendicular baselines), red lines represent selected pairs for each stack. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Table 4 
Characteristics of the stack subsets for the two study areas. The difference in total precipitation between coherence pairs of the DS and the three ES guarantees the 
contrast in their erosion information content required for the CCD approach to be efficient.  

Stack Precipitation of the rainiest  
day in the stack (mm) 

Precipitation between the coherence pairs 
[range] – mean (in mm) 

Number of coherence maps 

Study area 1 (Fig. 2C; Fig. 4) 
Dry stack NA [0–2] - 0.40 80 
Stack for rain event 1 225 [977–1416] - 1229 15 
Stack for rain event 2 91 [148–216] - 159 15 
Stack for rain event 3 83 [276–550] - 401 15 
Study area 2 (Fig. 2D; Fig. 5) 
Dry stack NA [0–1.1] – 0.19 117 
Stack for rain event 1 122 [175–280] - 186 15 
Stack for rain event 2 118 [161–468] - 291 15 
Stack for rain event 3 112 [212–347] - 253 15  

Fig. 8. Mean (A, B) and standard deviation (C, D) of the dry stack coherence for 12 days of temporal baseline and for study area 1 (A, C) and 2 (B, D). These maps 
(along with the ones for baselines of 24, 36, 48 and 60 days) are used to correct the background coherence component of pairs containing erosion information and to 
define anomalies beyond the coherence variations observed in dry conditions. (a) riparian vegetation; (b) permanent, dense vegetation; (c) zones of coherence 
variation around river corridors potentially due to temporary flooding; (d) areas of varying vegetation cover/density. 
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removal of any intermittent coherence loss (γt) due to moisture changes 
via averaging/stacking. 

Coherence pairs in the DS intercept, on average, 1490 and 1280 
times less rain than the erosion sub-stacks. This contrast is an important 
consideration as the DS is used to subtract γb but should not contain γp. 
In addition, as noted in the previous section, the identification of 
coherence connections is based on daily rain rates. Thus, the mean 
precipitation rates for coherence pairs within each ES do not align with 
the highest daily rain rates. Certain rain events span multiple days. Thus, 
while the maximum daily rain rate may not be the highest along the 
time-series, the total amount of rain between coherence pairs may still 
be high. This is observed, for example, for the rain Event 2 of the Study 
area 2, which has a high average rainfall per connection in comparison 
to the rain Event 1 for the same study area (Table 4). 

4.3. Coherence of the dry stacks (DS) 

The mean and standard deviation of the dry coherence stacks are the 
two statistical parameters used to 1) extract the yb component of 
coherence from all coherence pairs within the ES and 2) set the threshold 
for identification of yt and yp anomalies (Fig. 5). These two parameters 
are calculated for each temporal baseline configuration of the stacks: 12, 
24, 36, 48 and 60 days. Fig. 8 presents the two parameters for the 
temporal baseline of 12 days and for both study areas. 

Low coherence and/or high standard deviation inherently suggest a 
local decrease of sensitivity in the final erosion products. First, the radar 
signal needs to be sufficiently coherent to be impacted by potential 
erosion and for the erosion-related coherence loss to be identifiable. 
Second, because the temporal variations of coherence without influence 
of erosion increases the threshold allowing to discriminate sudden non- 
recoverable erosion changes from seasonal variability of the background 
coherence response and potentially, from seasonal moisture changes. In 
other words, it acts as noise which masks the erosion signal in our 
workflow. 

Observing Fig. 8, we note that corridors of vegetation such as ri-
parian zones are showing low coherence values due to dense and per-
manent vegetation. Higher coherence variations are identified in places 
that are temporarily flooded in the DS, e.g., near rivers, during receding 
stream conditions after the rain season. It can also happen where a low 
and/or thick vegetation cover dies through the dry season, leading to 
temporally fluctuating coherence values. 

Change of coherence in the DS due to temporal baseline change 
appears to be relatively slow and progressive (Fig. 9). Coherence loss is 
notably quicker in Study area 1, potentially due to the presence of low- 
lying vegetation. As expected, the 12-days coherence pairs are expected 
to be the most sensitive to erosion, with all coherence values between 
0.2 and 0.8. Using longer temporal baseline pairs could potentially lead 
to a decrease of sensitivity but allow correcting for yt via stacking. We 
note however, that the 60-days coherence pairs should remain sensitive 
to erosion, with most values remaining above 0.2. 

4.4. Erosion-related anomalous coherence loss for major rain events 

The coherence loss maps, expressed in proportion of the standard 
deviation of the erosion-free stack (unitless α-values), can be inter-
preted, after stacking multiple observations, as being related to soil 
surface changes. We note that the coherence in the ES is significantly 
smaller than in the DS (Fig. 10), with most values between 1 and − 3 
standard deviations of the DS (or α). By assuming that any erosion-free 
stack would vary positively and negatively in equal proportions in 
reference to the DS, we mirrored the positive part over the negative part 
(red bars in Fig. 10) to visually observe the anomalous coherence loss on 
the histogram. We conclude that for α-values of − 1 or less, the coherence 
loss is potentially anomalous in reference to the DS. 

It is important to note that stacking 15-images (Table 4) inherently 
reduce variance and narrows the histogram, explaining why positive 
values in the stacked-ES only barely reach +1 standard deviation of the 
un-stacked DS. We note that a proportion of that coherence loss might be 

Fig. 9. Histograms of the background coherence images for study area 1 (A) and 2 (B) and for three temporal baselines. Histograms were produced after averaging all 
coherence images in the dry stacks. 
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attributed to soil moisture changes potentially higher in the ES than in 
the DS. Attention will have to be paid to low-spatial frequency signals 
related to moisture residuals in the end-results. We also note that Fig. 10 
presents a theoretical case, and that the threshold of interpretability of 
CCD maps will need to be verified with real-life test cases. 

Anomalous coherence loss is detected for the three most important 
rain events occurred in study area 1 and 2 (Fig. 11). We note a general 
agreement for all three rain events and for both study areas. We also note 
the expected sensitivity loss along riparian corridors with typically 
dense and thick vegetation cover. For study area 2, a weaker coherence 
loss is observed for the first major rain event than for the two others 
(Fig. 11B). This agrees with the precipitation analysis (Table 4) which 
concluded than the highest daily rain rates do not coincide with the rain 
event with the highest total precipitation. 

4.5. Gully-scale comparison with DoDs 

DEMs of Difference (DoD) derived from 0.5 m resolution ALS DEMs 
(Aerial LiDAR Survey DEMs) were used to detect and measure erosion/ 
deposition in the gullies in study area 2 (Table 3; see DoD locations on 
Fig. 4B; Khan et al., 2023). The CCD method described earlier was 
slightly modified for accurate comparison with DoDs, which aggregates 
the erosion information over a large temporal window. Instead of con-
straining the connection graph to a specific rain event (as for results 
presented previously, e.g., Fig. 11), 50 coherence images within the time 
window of the DoD are randomly selected to form the ES. Results can be 
interpreted as a mean coherence loss map free of any influence of soil 
moisture changes and reflecting the average, anomalous radar signal 
decorrelation due to soil surface changes for the time window of the 
DoD. 

There were several inherent differences between radar CCD and 
DoDs, making their comparison challenging. First, they use different 
acquisition geometries (the angular acquisition geometry of the radar vs. 
a close-to-nadir laser detection). Second, their spatial resolution is 
different by at least one order of magnitude (tens of centimeters vs. tens 
of meters). Third, their time signature is different, as DoDs is a cumu-
lative measurement between two dates of DEM acquisitions and CCD (in 
the case presented here) averages a set of individual measurements of 
radar signal decorrelation (corrected coherence maps) within a time- 
window. Fourth, their sensitivities are different. DoDs are sensitive to 
changes beyond a detection threshold in the order of tens of centimeters 

of elevation change. The exact sensitivity of InSAR CCD is largely un-
known and depends on the radar wavelength. Two C-band radar images 
(e.g., Sentinel-1) will be completely decorrelated if the surface texture 
changes between the dates of acquisitions, even though the erosion rates 
are below DoD’s detection threshold or if no change in elevation occurs. 

In the large linear-alluvial Mount Wickham gully (length: 310 m and 
width: 150 m; Fig. 12A, B, C), both the DoD and the CCD detect major 
erosion near the boundary of the gully (Fig. 12B, C), particularly in the 
upper and mid sections of the gully (Fig. 12B – a,b). We note that 
coherence anomaly is detected solely where no vegetation occurs. 
Vegetation inside this gully might (Fig. 12A) have decreased the sensi-
tivity of the CCD. 

In the large alluvial Glen Bowen gully (length- 200 m and width 190 
m; Fig. 12D, E, F), the DoD detected erosion within the gully channels 
rather than at the gully boundary (Fig. 12E, c) and the coherence loss 
was detected in wider mid/central regions of the gully as well (Fig. 12F). 
This is perhaps because while the DoD detects erosion above a certain 
level of detection threshold value (depending upon the precision of the 
DEM survey- ALS LiDAR in this case), it is unable to pick up subtle 
geomorphic changes such as sheetwash erosion and deposition that 
would lie within the level of detection threshold value. In contrast, 
coherence loss can detect spatial distribution of such subtle textural 
changes such as sheetwash erosion as well. However, CCD detection of 
erosion/deposition within the narrow gully channels is dependent on 
the radar line-of-sight (LOS) angle. 

The linear Strathbogie gully (length- 320 m and width- 5 to 25 m; 
Fig. 12G, H, I) is relatively narrow compared to the large Mount Wick-
ham and Glen Bowen gullies. Localised erosion is observed along the 
head cut and channel boundary during 2019–2021, as detected by DoD 
(Fig. 12H, d,e). The coherence method detected erosion in the widest 
sections of this gully but is unable to pick up changes in narrower cross- 
sections (Fig. 12I). This is potentially related to the limited penetration 
of the radar signal within the gully due to the LOS angle. 

The results indicate that the CCD method is more efficient in wide, 
open, unvegetated, gullies where erosion is not restricted to narrow 
channels which cannot be penetrated/identified by the radar LOS angle. 
For example, we observe that the radar signal does not effectively 
penetrate the linear gullies at Strathbogie and hence is not capable of 
picking up the localised erosion in such narrow gullies. This also appears 
to be the case for incised channels within the Glen Bowen gully. In 
contrast, erosion/deposition appears well detected by CCD in a subset of 

Fig. 10. Histogram of the final α values for the first rain 
event over study area 2, with visual interpretation of the 
anomalous coherence loss related to erosion vs. normal 
coherence variations. Part 1 represents the positive values of 
coherence loss and its corresponding (symmetrical) negative 
values, the positive values correspond to rare pixels for 
which coherence is higher in the ES than the DS; Part 2 
represents coherence loss not attributable to erosion via a 
thresholding approach as it spreads across the same range as 
part 1; Part 3 represents the anomalous coherence loss 
attributable to erosion.   
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Fig. 11. Anomalous coherence loss (α value) calculated for the study area 1 (A, C, E) and 2 (B, D, F) and for the three first precipitation events identified on Fig. 6 and 
S1: events 1 (A, B), 2 (C, D) and 3 (E, F). Observations are highlighted as follow: examples of riparian vegetation interference (a), of areas with coherence loss for all 
rain events (b), of areas with varying degree of coherence loss (c), of areas of low coherence loss for all rain events (d), and of strong coherence loss along river 
channels (e). 
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Fig. 12. Comparison between a colour-composite image (A,D,G), DoD data (B,E,H), and the anomalous coherence loss factor (α value) representative of the DoD 
temporal coverage for that site (C, F, I). A-C cover the Mount Wickham location, D-F cover the Glen Bowen location, and G-I cover the Strathbogie location (see Fig. 4 
for locations). a,b,c,d and e highlights the main erosion features observable in DoDs. (Sources of colour-composite images: Esri, Maxar, GeoEye, Earthstar Geo-
grpahics, CNES/Airbus DS, USDA, AeroGRID, IGN, and the GIS User community). 
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the floor area of large alluvial and linear-alluvial gullies. This empha-
sises the strength of detecting geomorphic change using complimentary 
change detection techniques - CCD and DoDs in this case. The occur-
rence of erosion within gullies is supported by a sediment source tracing 
study which indicated that denuded areas on hillslopes and within 
drainage areas such as gullies may collectively be sediment sources of 
comparable importance to vertical channel banks directly on waterways 
in the Bowen River catchment (Hancock et al., 2014; Daley et al., 2023). 

4.6. Regional-scale comparison with gully maps 

The CCD map calculated for the entire length of the InSAR stack for 
study area 2 (Table 1, Fig. 7) is compared with the gully delineation 
dataset from Walker et al. (2020, 2022) (Fig. 13). Gullies are delineated 
using the geometric criteria of landform elements with steep walls and 
flat floors existing at locally low elevation. These criteria are mapped 
using slope, profile curvature and landscape position across multiple 
scales. Anomalous coherence loss beyond -1α (or one standard deviation 
of a normal erosion-free coherence map) occurs preferentially within 
gullies, as highlighted by Fig. 13A. Low alpha values are also observed 
outside of gullies mapped in 2018 following the approach presented by 
Walker et al. (2020), potentially due to hillslope erosion, the creation of 
new gullies not identified by the gully delineation algorithm, or the 
expansion of delineated gullies. The latter is observed in Fig. 13B, where 
erosion that is possibly related to surface sheetwash or rilling around an 
identified gully is observed by CCD. 

A comparison between CCD results and regional-scale gully delin-
eation (Daley et al., 2021) is presented in Fig. 14. Two different 
thresholds are applied in maps (A) and (B), highlighting that most values 
in the range [− 2 –1] occur outside of gullies. It also highlights the need 
to build expertise on interpretation of CCD maps for such applications. 
With few exceptions, values below -2α are only observed within gullies. 

4.7. Regional-scale comparison with gullying potential maps 

Overlaying the anomalous coherence loss maps calculated from the 
entire length of the InSAR stack to the gullying potential (GP) map 
proposed by Walker et al. (2020) provides interesting insights into the 
erosion activity of areas found to be at risk of gullying (Fig. 15). The 
coherence loss signal primarily occurs in the upslope portion of some 
zones at risk of gullying, suggesting that the early phases of sheetwash, 
rill and gully formation are occurring in these areas. Such behaviour is 
consistent with a sediment source tracing study in the Bowen River 
catchment which indicated that denuded areas on hillslopes and within 
drainage lines collectively may be sediment sources of comparable 
importance to vertical channel banks directly on waterways (Hancock 
et al., 2014). This application of InSAR takes advantage of the high 
sensitivity of the coherence loss mapping, where erosion rates might be 
low but textural change on the surface are sufficient to induce an 
observable loss of coherence. In addition, such observation is not chal-
lenged by the penetration of the InSAR signal into any specific topo-
graphic feature. 

4.8. Complementarity between CCD, DoDs, and gullying potential maps 

The three main pieces of erosion information presented in this paper 
(coherence loss maps, DoD, GP map) are presented for a specific gully 
channel over the Main Creek area (Fig. 16). A good correspondence is 
found between the CCD and the GP maps (Fig. 16A), with coherence loss 
observed above the gully head and spreading through a large section of 
the high GP values. The coherence loss signal is observed in the DoD 
within 50 m above the gully head (Fig. 16B), suggesting that the gully 
erodes not only at the headcut but erosion also progresses through 
surface degradation of the outer gully boundaries and along the GP 
channel (Fig. 16A). 

Gully extension is typically driven by the hydrologic and topographic 
properties of the contributing drainage area upslope of the gully head (e. 

Fig. 13. Spatial coincidence between InSAR CCD maps and gully delineation (GD, Walker et al., 2020; overlaid as red contours) for Red Hill creek (Fig. 4B). A) shows 
a histogram of 10,000 random samples from gullied vs un-gullied cells; B) gives a fine-scale example of the spatial relationship between mapped gullies and InSAR- 
derived erosion; C) gives a broad-scale view of coincidence between gullies and InSAR-derived erosion. The InSAR data was resampled to a finer (1 m) resolution 
using bilinear interpolation to match the gully delineation data. PDF stands for Probability Density Function. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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Fig. 14. Comparison between different 
α-value maps with regional-scale gully 
delineation from Daley et al., 2021 over 
the Collinsville area (Fig. 4). Three 
α-value maps are presented: for the most 
important rain event (A), for the three 
most important rain events (B) and a 
map based on an ensemble for the entire 
time-series (50 coherence maps not 
selected in the dry stack - C). As A and B 
aggregate erosion-affected coherence 
maps, thresholds (T) were adapted: − 2 is 
used in A and B, and − 1.5 is used in C. 
The correspondence between α-values 
and gullies is obvious in all cases (A, B, 
C). A colour-composite image is pre-
sented in D for comparison (sources: Esri, 
Maxar, GeoEye, Earthstar Geogrpahics, 
CNES/Airbus DS, USDA, AeroGRID, IGN, 
and the GIS User community).   
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Fig. 15. Example of gullying potential (GP) maps (Walker et al., 2020) overlaid on the radar-derived α-values over (A) Weany Creek 1, (B) Bogie and (C) Weany 
Creek 2. Locations are presented on Fig. 4. The LiDAR data from which the gullying potential map is derived was acquired on August 8th, 2021; the InSAR-derived 
erosion map aggregates anomalous coherence loss data over the entire period of each InSAR stacks, i.e., August 2016 to September 2021 (Table 1). While α-values 
below − 1.5 are shown here, the optimum threshold for interpretability is not known. 

Fig. 16. Comparison between GP map (Walker et al., 2020) and InSAR (left) and DoD data (right) over a gully in the Main creek area (Fig. 4). The DoD was 
calculated as the difference in elevation between 2013 and 2021 with positive (red) values indicating erosion and negative (blue) values indicating deposition. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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g., Gómez-Gutiérrez et al., 2015; Vanmaercke et al., 2016). Hydrological 
indices such as stream power and topographic wetness index are often 
used to represent the susceptibility of a hillslope to gully erosion (e.g., 
Conoscenti and Rotigliano, 2020), as is used in the GP maps in Figs. 15 
and 16. Stream power index is correlated with high sediment transport 
capacity (Prosser and Rustomji, 2000). The degree to which these 
indices predict gully erosion depends on local physiographic variables 
such as vegetation cover, soil type and rock fragment cover (Torri and 
Poesen, 2014). As a gully head advances upslope its contributing area 
also progressively decreases, leading to eventual hydraulic exhaustion 
(e.g., Torri and Poesen, 2014). The goal of most gully management 
strategies, such as revegetation of hillslopes, is to decrease concentrated 
flow into and increase the erosion resistance of the gully head to stabilise 
the gully (Valentin et al., 2005; Bartley et al., 2020). We show that 
combining CCD maps, DEMs of Difference (DoD) and gullying potential 
(GP) maps enables identification of actively eroding gullies with high 
potential for further incision (Fig. 15). The DoD confirms that the gully 
head is actively retreating upslope (Fig. 16B), while the GP map shows 
where the gully catchment area is susceptible to channel erosion before 
the gully approaches hydraulic exhaustion. The coherence loss map also 
indicates that active surface erosion is occurring within the area mapped 
to be at risk of channel incision and in subsets of the floor area of broad 
alluvial gullies (Daley et al., 2023). For site-scale gully management it is 
important to have a framework for identifying specific gullies as can-
didates for remediation. Through this example we have demonstrated 
that such a framework is possible by combining the three core analysis 
methods presented in this paper (CCD, DoDs and GP maps). 

4.9. In situ verification of coherence loss anomalies 

For verification of the coherence loss anomalies detected in the 
resultant InSAR output, field validation was conducted in November 
2022. This timing was selected as this coincides with the end of the dry 
season/initiation of the wet season, when vegetation cover is low, and 
erosion/deposition might be easily seen. Several point locations were 
identified in the Weany Creek (within Study area 1) using the mean 
coherence loss map and the GP map from Walker et al. (2020). Among 
the selected points, based on site accessibility and weather conditions, 
13 locations were surveyed (Fig. 17) focusing on identifying visible signs 
of soil erosion and/or deposition, recent surface changes from anthro-
pogenic activities (cattle movement, road work), and recent land cover 
changes (Table 5). Field validation is expected to shed light on the 
validity of the method, including the occurrence of false-positive when 
the method is used for erosion mapping, which might include deposition 
or any type of other ground surface roughness changes temporally 
coinciding with wet periods, with or without causal relation with pre-
cipitation. Another expected output of field validation is (1) the 
thresholding of the α-value maps, to understand the level over which the 
coherence loss can be interpreted and (2) the complementarity between 
the α-value map and GP mapping. 

All surveyed locations showed α-values below − 2. This means that 
wet-period coherence values are decreased, in comparison to dry-period 
coherence, by at least 2 standard deviations of the dry-period coherence. 
Among the 13 surveyed points (Fig. 17), 6 showed obvious signs of 
erosion (examples presented in Fig. 18), 4 showed signs of frequent 
cattle circulation (Fig. 18D), and one was in close proximity to several 
active gully heads. No explanation could be drawn for 3 out of the 13 
sites (sites 3, 5, 7), highlighting the need to further develop expertise in 
CCD map interpretation. For points with GP above 3, 3 out of 4 sites 
showed obvious signs of recent surface changes and potentially erosion 
(sites 1, 9, 12), confirming that the combination with a GP map might 
support interpretation of CCD maps by ruling out false positives 
observed over flat terrain (e.g., related cattle movements). When 
considering α-values below –2.5, surface roughness changes could be 
seen or inferred (e.g., observation of cattle tracks) in 6 out of 7 sites (4, 6, 
8, 11, 12, 13), highlighting the potential to ease interpretation of CCD 
maps by thresholding in the range [− 2.5–2]α. In addition, we note that 
(1) anthropogenic activities could lead to coherence loss signal in 4 out 
of 10 sites where surface roughness changes could be observed and (2) a 
potential signal leakage due to proximity of gully head is observed at one 
location (site 3), potentially related to the kernel integration inherent to 
InSAR coherence (in this case 5x5 pixels). 

Fig. 17. Location of in situ sites and position on the GP and α-value maps.  

Table 5 
Field observations in 12 locations shown on Fig. 17.  

Location  
(Fig. 17) 

Picture  
(Fig. 18) 

α value GP Visible erosion or  
deposition 

Visible anthropogenic  
disturbances 

Landform/vegetation cover and potential changes 

1 A − 2.03 3.96 X  Bare ground – surface changes likely 
2  − 2.11 2.01 X  Bare ground – surface changes likely 
3  − 2.43 1.23   No obvious changes – Proximity of gully head 
4 B − 2.93 1.12 X  Bare soil – signs of erosion and surface changes 
5  − 2.74 3.38   No sign of soil changes – low, non-permanent vegetation 
6  − 2.70 1.88  Cattle Nothing obvious except dead shrub 
7  − 2.33 2.38   Nothing obvious except dead shrub 
8  − 2.71 2.70  Cattle Stable bedrock outcrop, nothing obvious except dead shrub 
9 C − 2.37 4.92 X  Sandy gully, low lying vegetation 

10 D − 2.28 1.57  Cattle Mix of bare soil and deciduous vegetation 
11  − 2.54 1.56  Cattle Mix of bare soil and deciduous vegetation 
12 E − 3.12 3.97 X  Drainage lines, Bare soil with signs of surface changes 
13 F − 2.54 1.07 X  Bare soil with signs of surface changes and dead vegetation  
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5. Conclusions and perspectives 

By characterising the temporal decorrelation of the radar signal 
through InSAR Coherence Change Detection (CCD), it is possible to 
detect areas of surface changes, and to extract erosion information 
within erosion-affected coherence maps. The recent availability of large 
Sentinel-1 IW data time-series allows separation of such signal at tem-
poral scales ranging from a single rain event to several years. The tem-
poral density of these images allows applying a stacking approach 
leading to erosion maps free of artefacts from soil moisture and 
vegetation. 

This paper proposes and tests a strategy to effectively extract the 
geomorphic change information from an SBAS-InSAR coherence image 
stack. The background coherence decay is characterised via observa-
tions drawn from ‘dry coherence connections’ not affected by erosion or 
deposition. The corrected stack contains sufficient data to smooth the 
transient component of coherence related to moisture changes. The 
resulting map is expressed in units of standard deviation of the erosion- 
free coherence variations, allowing to easily identify coherence loss 
anomalies and account for spatially varying noise levels related to 
vegetation. 

Comparison with auxiliary datasets based on LiDAR survey and field 
observation indicates some of the benefits and limitations of the 
approach. The coherence analysis is particularly sensitive to any texture 
and surface roughness changes of the ground surface, and thus, not all 
observed decorrelations can be interpreted as erosion and compared to 
e.g., multi-temporal LiDAR data. The radar line of sight angle and res-
olution also severely constrains detection of erosion in narrow topo-
graphic features such as narrow gully morphologies. The technique 
appears to be particularly effective for observing erosion of small 
magnitude associated with the early development of gullies or the pro-
gression of current gullies beyond their extent, and with surface erosion 

within the floor of broad gullies, as this takes advantage of the high 
sensitivity of the coherence loss mapping over relatively flat terrain. 
Therefore, we conclude that C-band InSAR CCD is a complementary 
approach to airborne LiDAR for broad-scale mapping of erosion asso-
ciated with gullies. Due to this complementarity, DEM of difference 
analysis informed how to interpret InSAR CCD erosion patterns but 
proved not to be suitable for directly testing them, hence they should be 
further tested by other means. Another benefit of coherence-based 
erosion mapping is the cost-effectiveness for large-scale applications. 
It is particularly suited to prioritising areas for land and grazing man-
agement, to prevent further gully expansion. It may also be useful to 
support the prioritisation of gully remediation projects, and in helping 
differentiate between active, inactive and potential gully erosion. 

Future research includes (1) exploring the potential for long- 
wavelength, L-band InSAR CCD to map high erosion rates inside exist-
ing gullies and complement the observation of early gully development 
based on C-band data shown in this paper and (2) improving the 
extraction of the erosion information from a stack of anomalous 
coherence loss maps corrected for background coherence (yb). This in-
cludes testing data-driven methods to separate the erosion information 
and decompose mixed erosion signals, i.e., erosion of a specific rain 
event from erosion related to secondary events embedded in some of the 
CCD maps, particularly in coherence pair with longer temporal base-
lines. Finally, (3) testing different orbital direction and opposite LOS 
geometry could improve erosion mapping for deep gullies and stream 
banks. Such application should be tested where dense image time-series 
from both ascending and descending tracks are available, which, in 
Australia, is currently only possible in certain locations. Future avail-
ability of L-band NiSAR data will likely improve the capability of InSAR 
CCD to monitor sediment sources in rangelands and tropical savannas. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.rse.2023.113546. 

Fig. 18. Field observations on site 2 (A), 4 (B), 9 (C), 10 (D), 12 (E) and 13 (F). Bare ground and potential signs of recent surface changes can be seen in all pictures. 
Gullying is seen on (C), cattle tracks is seen on (D), 
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