Machinelearningalgorithms are often used
as a ‘black-box’ to find the relationship from
data. Choice of data affects quality of model,
and presumably critical for physics discovery
with data-driven methods. For rotating
stratified turbulence, previous works have
generallylearned from divergence of eddy
fluxes. Are there comparableor better

choices?

Methods:

Mean quasi-geostrophic Potential Vorticity

equation:
dq
ot

Helmholtz decomposition:

wq = -V +7 x VOl + H

Rotational fluxes can belargeand obscure

any underlying divergence.

For the divergence, couldlearnfrom
(1) itself V¥V -u'q’

(2) u.rq.r

(3) Eddy Force Function, from

V.u'q = -V20;

(The Dirichletboundary conditions
Weff =0 on the land boundaries)

Learning strategy:

f(x)=(y)

Same x (stream function, PV, etc.)
CNNs:

3 convolutionallayers

1 fully-connected layer
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flx)=(y)

3 pairs of learning datay

On the choice of training data
for machine learning of

geostrophic mesoscale turbulence

F. E. Yan, J. Mak, Y. Wang
5 TV (W) =-V-uq+Q

Choice of training data matters,
and learning from the
"Eddy Force Function" is comparable
in quality as well
as more robust than from the
divergence of eddy fluxes
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