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■ Method

Governing equation(3) Heat energy balance equation

Governing equation(2) Fluid flow equation

Governing equation(1) Equilibrium equation
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Variable Parameters Unit Variable Parameters Unit 

 Bulk modulus Pa  Heat capacity Jkg−1K−1 

 Shear modulus Pa  Thermal conductivity Wm−1K−1 

 Permeability m2 
 

Fluid thermal 

expansion coefficient 
K−1 

 Fluid viscosity Pa ∙ s 

α Biot-willis coefficient - 
 

Solid thermal 

expansion coefficient 
K−1 

 Specific storage Pa−1 

 
Thermo-poroelasticity equation consists of three governing equations. Governing equations (1) 
and (2) are fully coupled poroelasticity equations, and (3) is the heat energy balance equation.
We didn't consider porosity evolution, and convective heat transfer effects were neglected. 

■ Introduction
The subsurface fluid injection can change pore pressure and underground stress,

which may induce fault slip

That explains the interaction between pore fluid flow and elastic deformation
in a porous medium 

The temperature of injected fluid can control pore pressure and underground stress 
by thermo-poroelastic effect of fluid injection 

Real natural environments are composed of complex relationships, so numerical simulations 
considering multiphysics are necessary. When artificial fluid injection, it is required to consider 
the relationship between the fluid and the pore skeleton, the temperature of the injected fluid,
or the geothermal gradient.
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Time evolution of pore pressure. the purple point is located in 
the sandstone layer, a pink point is located in the fault.

Time evolution of CFS. If the CFS change of the fault is positive, 
it indicates that the fault is close to fault slip.   

Vertical displacement along the surface is exaggerated by 1,000 times to emphasize surface deformation. 

Temperature change near the injection well

■ Conclusion & Future works  
Use the thermo-poroelastic equation to calculate pore pressure, temperature, Coulombic fracture 
stress change, and vertical displacement in an artificial fluid injection environment.

Shows that pore pressure, stress, etc. increase for a period of time after the end of fluid injection.

This indicates the need for monitoring after the end of the fluid injection.

In this study, the heat energy balance equation was not fully coupled to the fully coupled 
poroelasticity equation, but a fully coupled thermo-poroelastic equation should be considered 
for accurate calculations.

It is also necessary to consider the evolution of porosity and permeability.

■ Results 3.  Temperature change(    )∆  
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■ Results 4.  Vertical displacement(   )
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■ Model set-up.  Numerical model domain with three layers and mesh structure
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Numerical modeling

Visualization

Numerical model. The left section shows the mesh and boundary conditions, and the red box magnifies the mesh structure near the junction of the sandstone layer and the fault. The right section 
shows a model domain and injection scenario. The numerical modeling is done using the finite element software COMSOL Multiphysics and the visualization is done using ParaView.

■ Results 1.  Porepressure change(    )∆
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■ Results 2.  Coulomb failure stress change(       )∆
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