A thermo-poroelastic finite element analysis of fluid injection depending on fluid temperature and injection scenarios Chan-Hee Jang^{1*}, HyunNa Kim², Byung-Dal So¹

which may induce fault slip

by thermo-poroelastic effect of fluid injection

in a porous medium

$$\left(K + \frac{G}{3}\right)u_{k,ki} + Gu_{i,kk} - 3K\beta_s T_{,i} - \alpha p_{,i} = 0$$

$$-\frac{\kappa}{\eta}p_{,kk} + \alpha\frac{\partial\varepsilon_V}{\partial t} + S_s\frac{\partial p}{\partial t} - (\phi 3\beta_f + (\alpha - \phi)3\beta_s)\frac{\partial T}{\partial t} = 0$$

$$\rho C_T \frac{\partial T}{\partial t} - k_T T_{,kk} = 0$$

Variable Parameters		Unit	Variable Parameters		Unit
K	Bulk modulus	Pa	C_T	Heat capacity	$Jkg^{-1}K^{-1}$
G	Shear modulus	Pa	k_T	Thermal conductivity	$Wm^{-1}K^{-1}$
κ	Permeability	m^2	eta_f	Fluid thermal	K^{-1}
η	Fluid viscosity	Pa·s		expansion coefficient	
α	Biot-willis coefficient	-	0	Solid thermal	17 -1
S_s	Specific storage	Pa^{-1}	μ_s	expansion coefficient	K -

¹Department of Geophysics, Kangwon National University, Republic of Korea ²Department of Geoenvironmental Sciences, Kongju National University, Republic of Korea (jchee103@kangwon.ac.kr)

