

¹Ankur Roy, ²Tapan Mukerji & Amitabha Chakrabarti

¹Deysarkar Centre of Excellence in Petroleum Engineering, Indian Institute of Technology Kharagpur, INDIA; ²Stanford University, USA

Supplementary Materials

Research Summary

Ripple Index alone is not enough for distinguishing between tidal channels and estuarine setting

Grain-size parameters Mean, Sorting, Skewness and Kurtosis are considered

Cross plotting grain-size parameters help to some extent \rightarrow "ambiguity" even in color coded cross-plots

Dissimilarity Matrix between samples constructed from RI and grain-size parameters \rightarrow a "distance" measured between samples and plotted \rightarrow City-Block and Standard Euclidean distances give good "separation"

Can we Identify paleo-environments from rock record?

ACKNOWLEDGMENTS

¹Ankur Roy, ²Tapan Mukerji & Amitabha Chakrabarti

¹Deysarkar Centre of Excellence in Petroleum Engineering, Indian Institute of Technology Kharagpur, INDIA; ²Stanford University, USA

Supplementary Materials: Field Areas of Digha & Chandipur

Chandipur (INDIA): Tidal Channe

¹Ankur Roy, ²Tapan Mukerji & Amitabha Chakrabarti

¹Deysarkar Centre of Excellence in Petroleum Engineering, Indian Institute of Technology Kharagpur, INDIA; ²Stanford University, USA

Supplementary Materials: Field Photos & Rose Diagrams showing current directions

Ripple Marks (estuarine region)

Current Direction: CHANDIPUR

Ripple Marks

¹Ankur Roy, ²Tapan Mukerji & Amitabha Chakrabarti

¹Deysarkar Centre of Excellence in Petroleum Engineering, Indian Institute of Technology Kharagpur, INDIA; ²Stanford University, USA

Supplementary Materials: Ripple Profile from Estuary

¹Ankur Roy, ²Tapan Mukerji & Amitabha Chakrabarti

¹Deysarkar Centre of Excellence in Petroleum Engineering, Indian Institute of Technology Kharagpur, INDIA; ²Stanford University, USA

Supplementary Materials: Ripple Profiles from Tidal Channel

INDEX(RI

7.33

0.055

¹Ankur Roy, ²Tapan Mukerji & Amitabha Chakrabarti

¹Deysarkar Centre of Excellence in Petroleum Engineering, Indian Institute of Technology Kharagpur, INDIA; ²Stanford University, USA

Supplementary Materials: The MDS Concept

If pairwise distances between N = 9 cities available \rightarrow uniquely map them on a 2D map

Given pairwise distances between N samples \rightarrow map them on any dim $\leq N$

MDS embeds samples in a *lower dimension space* with pairwise distances as, 20 close as possible to the input distance matrix.

figure: Mancell & Deutsch, 2019

Euclidea	n Distance in	n Original S	pace (3-dim	ensions)
A	В	C	D	Entity
	1.69	2.53	2.20	A
		2.66	2.61	В
			0.82	C
			100	D

Euclidean	Distance in	Lower Dime	nsion (2-din	iensions)
A	В	С	D	Entity
	1.71	2.53	2.20	A
		2.67	2.59	В
			0.82	C
		- 2		0.00

MDS Plots using Different Distances

Euclidean	$d(x, y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$	Minkowski $p = 3$	$\Biggl(\sum_{i=1}^n x_i\>-$
0.8	Estuary Tidal Channel		• Estua • Tidal
0.6	: :		
0.4			
0.2	•		, •

Standard Euclidean

City-Block

 $d = \sum_{i=1}^{n} |\mathbf{x}_{i} - \mathbf{y}_{i}|$

42 ripple samples, each values of mean, sorting, skewness ripple-index → distance matrix formulated from the table above. Four different distances used Euclidean, Standard Euclidean, City-Block and Minkowski

KURTOSIS(K_G) SORTING(σ

0.502

1.028

Sharing not permitted

Minkowski p = 3	$\left(\sum_{i=1}^n x_i-y_i ^2 ight.$

¹Ankur Roy, ²Tapan Mukerji & Amitabha Chakrabarti

¹Deysarkar Centre of Excellence in Petroleum Engineering, Indian Institute of Technology Kharagpur, INDIA; ²Stanford University, USA

Supplementary Materials: MDS Plots colored with Ripple Index & Ripple Height

MDS Plots: City Block Distance