${ }^{1}$ Ankur Roy, ${ }^{2}$ Tapan Mukerji \& Amitabha Chakrabarti

${ }^{1}$ Deysarkar Centre of Excellence in Petroleum Engineering, Indian Institute of Technology Kharagpur, INDIA; ${ }^{2}$ Stanford University, USA

Supplementary Materials

Research Summary

Ripple Index alone is not enough for distinguishing between tidal channels and estuarine setting
Grain-size parameters Mean, Sorting, Skewness and Kurtosis are considered
Cross plotting grain-size parameters help to some extent \rightarrow "ambiguity" even in color coded cross-plots
Dissimilarity Matrix between samples constructed from RI and grain-size parameters \rightarrow a "distance" measured between samples and plotted \rightarrow City-Block and Standard Euclidean distances give good "separation"

Can we Identify paleo-environments from rock record ?

Acknowledgments

Current \& former PhD / MSc students of the Reservoir Research Initiative (RRI) Group, IIT Kharagpur: Ajay Sahu, Ketan Kumar \& Rayaan Biswas. Dr. Asoke Deysarkar, PfP Industries, Houston, TX, for his continuous support \& encouragement
${ }^{1}$ Deysarkar Centre of Excellence in Petroleum Engineering, Indian Institute of Technology Kharagpur, INDIA; ${ }^{2}$ Stanford University, USA
Supplementary Materials: Field Areas of Digha \& Chandipur

Identifying Sub-Environments in a Tidal Flat - A Multidimensional ScALING APPROACH

${ }^{1}$ Ankur Roy, ${ }^{2}$ Tapan Mukerji \& Amitabha Chakrabarti

${ }^{1}$ Deysarkar Centre of Excellence in Petroleum Engineering, Indian Institute of Technology Kharagpur, INDIA; ${ }^{2}$ Stanford University, USA
Supplementary Materials: Field Photos \& Rose Diagrams showing current directions

Ripple Marks (estuarine region)

Current Direction: CHANDIPUR

DIGHA

Identifying Sub-Environments in a Tidal Flat - A Multidimensional Scaling Approach

${ }^{1}$ Ankur Roy, ${ }^{2}$ Tapan Mukerji \& Amitabha Chakrabarti
${ }^{1}$ Deysarkar Centre of Excellence in Petroleum Engineering, Indian Institute of Technology Kharagpur, INDIA; ${ }^{2}$ Stanford University, USA

Supplementary Materials: Ripple Profile from Estuary

Supplementary Materials: Ripple Profiles from Tidal Channel

Identifying Sub-environments in a Tidal Flat - A Multidimensional Scaling Approach

${ }^{1}$ Ankur Roy, ${ }^{2}$ Tapan Mukerji \& Amitabha Chakrabarti

${ }^{1}$ Deysarkar Centre of Excellence in Petroleum Engineering, Indian Institute of Technology Kharagpur, INDIA; ${ }^{2}$ Stanford University, USA

Supplementary Materials: The MDS Concept

If pairwise distances between $N=9$ cities available \rightarrow uniquely map them on a 2D map

Given pairwise distances between N samples \rightarrow map them on any $\operatorname{dim} \leq N$

MDS embeds samples in a lower dimension space with pairwise distances $a s_{x 3}$ close as possible to the input distance matrix.

[^0]

42 ripple samples, each with values of mean, sorting, skewness and ripple-index \rightarrow distance matrix formulated from the table above. Four different distances used Euclidean, Standard Euclidean, City-Block and Minkowski

MDS Plots using Different
 Distances

$$
d(x, y)=\sqrt{\sum_{i=1}^{n}\left(x_{i}-y_{i j}\right)^{2}}
$$

Minkowski

 $p=3$

${ }^{1}$ Ankur Roy, ${ }^{2}$ Tapan Mukerji \& Amitabha Chakrabarti
${ }^{1}$ Deysarkar Centre of Excellence in Petroleum Engineering, Indian Institute of Technology Kharagpur, INDIA; ${ }^{2}$ Stanford University, USA
Supplementary Materials: MDS Plots colored with Ripple Index \& Ripple Height

[^0]: figure: Mancell \& Deutsch, 2019

