

This presentation participates in **OSPP**

Outstanding Student & PhD candidate Presentation contest

Clustering and Random Forest Analysis for the Identification of Hydrological Controls of Slope Response to Rainfall Daniel Camilo Roman Quintero, Pasquale Marino, Giovanni Francesco Santonastaso, Roberto Greco

	Soll cover thickness (m)	2		
Soil cover	Saturated water content (-)	0.75		
	Residual water content (-)	0.01		
	VG. air entry value index (m ⁻¹)	6		
	VG. shape parameter [n] (-)	1.3		
	Saturated hydraulic	2,10-5		
	conductivity (m/s)	2X10-2		
	Epikarst thickness (m)	14		
Epikarst	Effective porosity (-)	0.005		
	linear reservoir const (days)	871		

Figure 2. Seasonal behavior of the antecedent underground conditions θ_{100} and h_a (or h_s for field data) for: (a) the field monitored dataset and (b) the synthetic dataset

Dipartimento di Ingegneria, Università degli Studi della Campania "Luigi Vanvitelli", Italy danielcamilo.romanguintero@unicamapania.it

https://meetingorganizer.copernicus.org/EGU23/EGU23-11154.html

(a)			Impoi	rtance		(b)			Impoi	rtance	
Dataset	RMSE	Н	θ_6	$ heta_{100}$	h _a	Dataset	RMSE	Н	θ_6	θ_{100}	ha
$\langle H, \theta_6, h_a \rangle$	5.353	0.963	0.024	-	0.012	$\langle H, \theta_6, h_a \rangle$	0.213	0.352	0.329	-	0.319
$\langle H, \theta_{100}, \mathbf{h_a} \rangle$	4.336	0.964	-	0.024	0.010	$\langle { m H}, {m heta}_{100}, { m h}_a angle$	0.197	0.293	-	0.405	0.302
$\langle H, \theta_6, \theta_{100}\rangle$	4.706	0.962	0.014	0.022	-	$\langle H, \theta_6, \theta_{100} \rangle$	0.203	0.340	0.261	0.399	-
$\langle \theta_6, \theta_{100}, \mathbf{h}_a \rangle$	24.665	-	0.313	0.340	0.345	$\langle \theta_6, \theta_{100}, h_a \rangle$	0.210	-	0.292	0.414	0.293

dataset (fig. 4a-b) and for the identified clusters (fig. 4c-h). Finally, Figure 5 shows the distribution of the slope response at each cluster.

The data analysis, using the Random Forest, is done based on hydrological variables feasible to be measured in the field: cumulative rainfall event depth (H), mean soil volumetric water content at 6 cm and 1 m depth (θ_6 and θ_{100}) and the ground water level (h_a) , both before the rainfall initiation.

The slope response is assessed according to the change in the water stored in the soil

The variable importance feature of Random Forest is used here to analyze the best way to assess the slope response and choose the best triplets to be related in order to identify the hydrological controls to slope behavior. Table 2 summarizes the results of

The Random Forest modelling has been performed assuming the hyperparameters that ensure a stable response: a forest size of 100 trees and a maximum branch splits of 20.

Results

The dry antecedent conditions are gathered in cluster 1, described by θ_{100} typically below the field capacity (estimated as $\theta = 0.35$) and low values of h_a . In such cases the slope tends to retain all the rainwater, but evapotranspiration can subtract significant amount of infiltrated water, showing a summer-like behavior. Inversely, wet soil conditions are found in clusters 2 and 3, with θ_{100} typically above the field capacity:

- (i) In cluster 2 wet soil is coupled to high h_a , i.e., conditions normally occurring in late winter and spring. The active drainage lets part of the rainwater drain out of the soil cover to the epikarst, so the slope response is comparable to cluster 1.
- (ii) In cluster 3 wet soil is coupled to low h_a , gathering scenarios normally observed in late autumn, when most of the rainwater tends to accumulate in the soil cover due to the impeded drainage through soil-epikarst interface.

Cluster 4 gathers conditions in which the slope drains out much of the rainfall. Such response is normally seen with active drainage conditions, in the transition period from spring to summer.

Nomenclature Total rainfall amount

$ heta_{100}$	Mean volumetric water content at 1 m depth		
θ_6	Mean volumetric water content at 6 cm depth		
h _a	Epikarst water level		
h _s	Stream water level		
ΔS	Change in water stored in the soil cover at the en		
References			

1. Greco R, Marino P, Santonastaso GF, Damiano E. Interaction between perched epikars aquifer and unsaturated soil cover in the initiation of shallow landslides in pyroclastic soils. Water 2018, 10, 948.

2. Marino P, Comegna L, Damiano E, Olivares L, Greco R (2020). Monitoring the Hydrological Balance of a Landslide-Prone Slope Covered by Pyroclastic Deposits over Limestone Fractured Bedrock. Water 12(12): 3309

3. Marino P, Santonastaso GF, Fan X, Greco R (2021). Prediction of shallow landslides pyroclastic-covered slopes by coupled modeling of unsaturated and saturated groundwater flow. Landslides 18(1): 31-41

4. Roman Quintero DC, Marino P, Santonastaso GF, Greco R (2023). Understanding hydrologic controls of slope response to precipitations through Machine Learning analysis applied to synthetic data. EGUsphere: 1-41. DOI: 10.5194/EGUSPHERE-2022-

