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1 | INTRODUCTION

Abstract

The unprecedented progress in ensemble hydro-meteorological modelling and
forecasting on a range of temporal and spatial scales, raises a variety of new
challenges which formed the theme of the Joint Virtual Workshop, ‘Connect-
ing global to local hydrological modelling and forecasting: challenges and
scientific advances’. Held from 29 June to 1 July 2021, this workshop was co-
organised by the European Centre for Medium-Range Weather Forecasts
(ECMWEF), the Copernicus Emergency Management (CEMS) and Climate
Change (C3S) Services, the Hydrological Ensemble Prediction EXperiment
(HEPEX), and the Global Flood Partnership (GFP). This article aims to sum-
marise the state-of-the-art presented at the workshop and provide an early
career perspective. Recent advances in hydrological modelling and forecasting,
reflections on the use of forecasts for decision-making across scales, and means
to minimise new barriers to communication in the virtual format are also dis-
cussed. Thematic foci of the workshop included hydrological model develop-
ment and skill assessment, uncertainty communication, forecasts for early
action, co-production of services and incorporation of local knowledge, Earth
observation, and data assimilation. Connecting hydrological services to societal
needs and local decision-making through effective communication, capacity-
building and co-production was identified as critical. Multidisciplinary collabo-
rations emerged as crucial to effectively bring newly developed tools to
practice.

KEYWORDS

communication, co-production, earth observation, earth system, forecasting, hydrological
modelling, hydrological services, uncertainty

observations to relevant local impacts (Nearing
et al., 2021). These challenges are particularly important

Recent decades have seen unprecedented advances in
Earth observation (EO), which has helped transition
global-scale hydrology from a data-poor to a data-rich sci-
ence (Bates, 2012; Di Baldassarre & Uhlenbrook, 2012)
and contributed to an enhanced understanding of the
water cycle. The increased availability of satellites
(e.g., EUMETSAT, SMOS, Sentinel-1, GPM, GRACE),
ground-based remote sensing, weather reanalysis, or
crowdsourced datasets, with focus on providing global
information on the hydrological cycle variables, has given
hydrology a more global perspective (Kratzert
et al., 2019). However, large-sample hydrology brings
additional challenges such as processing, handling and
storing large data volumes, integrating multiple data
sources, quantifying uncertainties, and linking global

to hydrological modelling and forecasting, and the joint
virtual workshop discussed in this article was organised
as an effort to jointly reflect on these challenges as a
community.

The workshop themed ‘Connecting global to local
hydrological modelling and forecasting: challenges and
scientific advances’ (referred to hereafter as ‘workshop’)
was co-organised by the European Centre for Medium-
Range Weather Forecasts (ECMWF), the Copernicus
Emergency Management (CEMS) and Climate Change
(C3S) Services, the Hydrological Ensemble Prediction
EXperiment (HEPEX) and the Global Flood Partnership
(GFP) from 29 June to 1 July 2021 with over
1000attendees. Calling on the wider hydrological
research sphere, it aimed to bring together a diverse
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global community (Figure 1) of scientists, forecasters,
disaster managers and stakeholders to discuss recent
advances and ongoing water-related challenges. Covering
broad aspects across the field from hydrological model-
ling and uncertainty communication to forecast-based
early action, the workshop revealed the attempts of the
community to break the boundaries of the state-of-the-
art, and to make modelling and forecasting more accessi-
ble and useful locally.

As the workshop was scheduled during the COVID-
19 pandemic, the organisers were aware of increasing
apathy towards online virtual events and the concept of
‘Zoom-fatigue’ (Shoshan & Wehrt, 2021). To combat the
ongoing strains of virtual working, the organisers endea-
voured to create a workshop that would be engaging and
exciting for attendees, while also providing unique oppor-
tunities for networking and knowledge exchange (Keeley
et al., 2021). These efforts resulted in a hybrid solution; a
mix of live-streamed presentations hosted via Zoom, and
interactive events hosted through the Gather.Town plat-
form (Gather, 2021). Gather.Town is a customisable vir-
tual space where participants can move an avatar around
the virtual venue and interact with other participants
nearby through video call. For this workshop, the
Gather.Town space was designed to be a replica of the
ECMWF headquarters in Reading, UK (Figure 2). The
solution proved to be a huge success, receiving praise
from attendees who admired the ‘real’ human connec-
tion they were able to achieve on the virtual platform.
The workshop also facilitated many interactive sessions,
such as poster presentations, a Sci-Art (science and art)
activity, and various information booths on the Climate
Data Store (CDS), C3S and CEMS. Informal networking
and social events were hosted at the virtual ECMWF in
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Gather.Town. This resulted in spontaneous and planned
splinter meetings. For example, the Early Career HEPEX
(EC-HEPEX) meet-up proved to be a popular opportunity
to discuss early career perspectives on the state-of-the-art
in hydrological forecasting.

Another example of how a virtual environment does
not have to be limiting is how the artwork ‘Hydrological
Constellations’ was created (Arnal, 2021). Art can be
used not only to communicate science but also to inspire
scientists (Halpine, 2008). Prior to the workshop, a short
online questionnaire was sent to participants with ques-
tions related to their practice and perspectives on hydro-
logical modelling and forecasting. The responses were
used to create digital art pieces, transforming clusters of
answers into night sky constellations (Figure 3). The art-
work was displayed virtually, and participants could form
ad hoc groups, leading to spontaneous discussions. These
discussions were then added to the digital artwork in the
form of storylines behind each constellation/art piece. A
full discussion of the art pieces is presented in
Arnal (2021).

This article summarises and reviews the achieve-
ments of the workshop. It places its focus on five themes
at the forefront of global hydrological forecasting
(Figure 4), which encompass the wide variety of topics
discussed during the workshop. The 90 posters presented
at the workshop (Table Al) were grouped in virtual
rooms according to these themes, with authors giving a
short pitch (2-min duration) during the online Zoom ses-
sions ahead of the interactive poster sessions in Gather.
Town. The poster sessions emulated a conference envi-
ronment and participants were able to move between
posters, joining active conversations and discussions
around the posters, closely emulating an in-person event.

FIGURE 1

Map of the average global views of the workshop (over all 3 days of the workshop, 29 June to 1 July 2021, where darker
shading indicates higher views). Attendance was widespread, with 49 countries represented
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Interactive sessions took
place in the Weather Room
including Sci-Art, info
booths, and a demo on the
Climate Data Store (CDS).

Participants joined the EC-HEPEX early career hangout session to
meet their peers and to foster discussions on global hydrological
forecasting and how it can be better linked to local scale needs.

Poster Sossion 2 (15.45-16:30)

Poster sessions and lively
scientific discussions were
hosted in dedicated
Gather.Town rooms.

The workshop’s
Gather.Town environment
was designed to be a
replica of ECMWF HQ.

Attendees of the workshop gathered in ECMWF Gather.Town
courtyard for a virtual workshop photo!

FIGURE 2

Layout of ECMWEF's Gather.Town environment for the workshop. Participants joined the sessions to view posters, attend

activities, and meet their peers to foster discussions on global hydrological forecasting and how it can be better linked to local scale needs

FIGURE 3 The final artwork piece, ‘Hydrological
Constellations’, by Louise Arnal. This science and art piece is a
metaphor for reading our destiny in the night sky constellations,
and how far we have advanced as a community in terms of
predicting future hydro-meteorological events. This art piece was
created as part of the interactive virtual sessions of the workshop

In this article, we present the wide range of contribu-
tions to the workshop as a microcosm of the work being
done by the wider hydrological community globally. The

following sections provide a review of the work presented
under each of the five key themes (acknowledging that,
in many cases, one presentation may contribute to multi-
ple themes). The presentations provide an overview of
the challenges and advances in global hydrological
modelling and forecasting, and of the research and appli-
cations that endeavour to effectively connect these global
efforts to local scale decision-making. The sixth theme,
‘Earth System Modelling’, is woven throughout the five
subsections. The final section of this article concludes
with a discussion focussing around two questions:

1. How effective was the digital format in representing a
broad view and bringing a global audience together?

2. In which direction is the field of global to local hydro-
logical forecasting moving as a whole?

A full list of the contributions is provided in Table Al,
detailing the authors of the work and indicating the cita-
tion codes used throughout this article. These citation
codes follow a format providing the initials of the first
author followed by a letter indicating whether the work
was presented as a keynote talk [Author Initials-K] or a
poster [Author Initials-P] within square brackets. Addi-
tionally, where something asserted by a presenter is
directly referenced, the citation follows the format Author
et al. [Author Initials-K/P]. Published work is cited in the
usual way. The presentations and posters can be viewed
online at https://events.ecmwf.int/event/222/timetable/.
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FIGURE 4 Schematic of the workshop's topical organisation. The five themes acted as the pillars of the workshop, while the sixth
session, ‘Earth System Modelling’, was threaded throughout the five topics

2 | FORECASTING AND
UNCERTAINTY

2.1 | Predictability and uncertainty
Hydrological forecasting assists many water-related appli-
cations in different horizons, helping society understand
and mitigate the imminent threat posed by water cycle
extremes (e.g., floods and droughts) and facilitating effi-
cient water resources management. Uncertainty is an
inherent part of forecasting and can, in hydrology, stem
from meteorological forecasts and other input data,
hydrological model structure and parameters, and the
chaotic nature of our atmosphere (Lorenz, 1969) and
Earth system. Uncertainties propagate through the fore-
casting chain and can degrade forecast quality,

potentially leading to inadequate decisions if not quanti-
fied correctly (Schaake et al., 2007; Thiboult et al., 2016).
However, as Stephens [ES-K] highlighted, accurately
quantifying uncertainty is not sufficient if there is not an
appropriate understanding and communication of its
implications (Demeritt et al., 2013). Therefore, forecast
products should be accompanied by systematic analysis
of forecast uncertainty (Boelee et al, 2019; Troin
et al., 2021). This comprises of identification, classifica-
tion, quantification, propagation, and communication of
uncertainty to users.

Epistemic uncertainty (lack of knowledge) was the
most commonly addressed type of uncertainty in the
workshop presentations (Figure 5, Table A2). The work-
shop presented different approaches (e.g., machine learn-
ing techniques, multi-model studies, and comparison of
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Types of uncertainty addressed in the Workshop
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FIGURE 5 The main types of uncertainty tackled at the workshop (aleatory, epistemic, semantic/linguistic) linked to the applied model

(single model, single model + pre-/post-processing, multi-model). A more detailed description of the types of uncertainty and the specific
contributions linked to each type can be found in Table A2 in the Appendix.

deterministic and probabilistic models) to estimate pre-
dictive uncertainty, considering uncertainty sources
either separately or holistically.

Understanding the predictive uncertainty of stream-
flow forecasts, and the sources of forecast skill allows
forecasts to be benchmarked ([IP-P; FM-P]; Girons Lopez
et al., 2021). This information provides clues about where
and when efforts should be made to improve forecast
quality and make it valuable for decision-makers ([LA-
P]; Pechlivanidis et al., 2020). Several presentations con-
tributed to the understanding of streamflow predictability
through a focus on the hydrological-cycle processes [IP-P;
LA-P; PD2-P]. Natural processes with high variability
have lower predictability (larger uncertainty) and are
challenging to simulate. For instance, precipitation has a
higher variability than temperature (whose bias is rela-
tively constant, Hagedorn et al., 2008) and was consid-
ered as one of the most difficult variables to predict in
several studies [PD2-P; FJ-P; AB1-P; JSL-P2]. Therefore,
it is crucial to identify the relationship between forecast
quality, catchment descriptors, and hydrological signa-
tures [GM-P; MB1-P]. Seasonal forecasts are commonly
less skillful in flashy basins or when characterising
extreme events [TS-P; IP-PA; B1-P]. In regions where
hydrometeorological processes are less dominant
(e.g., wet season in tropics) [HMS-P2] or are controlled
by slow hydrological responses (e.g., snow and baseflow)

[DR-P; TJ-P], forecasts were shown to have higher
streamflow predictability. Therefore, given the spatial
and temporal variability of streamflow predictability, it is
challenging to identify a unique model or system that is
applicable everywhere and at multiple temporal scales
(see Sections 3 and 5). Nevertheless, operational large-
scale models (e.g., GIoFAS) attempt to provide globally
consistent forecasts, which can be relevant as a tool for
global and local decision-making (Section 6).

2.2 | The role of automation in fitness-
for-purpose modelling

The wusefulness of operational forecasting systems
depends not only on the correct representation of hydro-
meteorological processes but also on cultural, social, and
political factors (Pagano et al., 2014). Consequently, the
need for operational forecasting services may vary across
countries and applications. In her keynote talk, Parker
[WP-K] explained the advantages of adopting a fitness-
for-purpose approach to evaluation. In this approach,
what matters is not how close a model comes to perfectly
representing a real system, but whether the model repre-
sents the system sufficiently well in those respects that
are relevant to the purpose at hand, as well as whether it
has other required pragmatic features, such as being
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understandable by users or computationally efficient
(Parker, 2020). This tailored approach suggests building
forecast systems that are adaptable to individual circum-
stances and flexible enough to continuously incorporate
newly developed techniques, especially for climate adap-
tation [AB2-P; LN-P; TB-P]. Moreover, a high degree of
automation may enhance the fitness-for-purpose of a
forecast system.

One of the highlights of the advances presented at the
workshop is that operational systems are undergoing the
‘human over-the-loop’ approach [AW-P; BvO-P1], that
is, the forecaster is manually less involved in some of the
more technical forecast stages. This has facilitated the
transition from deterministic to ensemble approaches
[GU-P; DH-P; CPH-P; HN-P; AW-P], since automation
allows incorporating more sophisticated pre/post-
processing (Section 2.3) and data assimilation techniques
(Section 4), running multiple high spatial resolution
models (Section 5) and assisting in the verification pro-
cess [BvO-P2]. Furthermore, automation for generating
ensemble forecasts, whose dispersion comes from many
sources of uncertainty, provides a more comprehensive
estimate of uncertainty about future conditions, facilitat-
ing decision-making (Sharma et al, 2019; Valdez
et al., 2022). For instance, ensemble systems for flood pre-
diction [FF-P2; GU-P; RH-P; HH-P; HT-P; TS-P] were
characterised by higher accuracy at longer lead times and
by providing essential spatial information that determin-
istic approaches might not capture. However, it was also
highlighted that combining deterministic and ensemble
forecasts can provide complementary information that
may facilitate both resilience to hydrological extremes
and optimised flow management (e.g., agricultural activi-
ties adaptation under water stress conditions, short-term
maintenance operations) [LC-P; AB2-P].

A high level of automation not only allows forecast
verification to assess the system's ability to capture uncer-
tainty, but also allows the forecaster to focus on tasks
where their expertise is paramount—for example, incor-
porating local knowledge and adapting the system to the
user's demands, interpreting model results, and commu-
nicating the forecasts with their uncertainties to users
(Demeritt et al., 2014).

2.3 | Reducing uncertainty via
hydrological pre-/post-processing

Statistical pre- and post-processing techniques characterise
the frequency distribution of past prediction errors and
apply this information to correct model outputs (Li
et al.,, 2017). Their primary goal is to reduce the biases
resulting from partial quantification of hydrometeorological
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uncertainty. We can differentiate between pre-processing
(to reduce meteorological input uncertainty) and post-
processing (to reduce the hydrologic model output uncer-
tainty). Pre-/post-processing can result in powerful tools for
data scarce studies, especially in mountainous regions
[DH-P; FJ-P], for complex systems with multiple applica-
tions [HMS-P1; LC-P; CPH-P], for monitoring urban flood-
ing and droughts [AG-P; HN-P], for reservoir operation
[WG-P], and for flood risk assessment [AB1-P]. However,
their performance is greatly dependent on data availability
and hence can be constrained by limited data (in general
observational data) for training the processing techniques
[LF-P], especially when extreme events are of interest
([TK-P]; Hamill et al., 2015).

Presentations on the advances in pre-processing tech-
niques were centred around increasing the skill of precip-
itation predictions (especially of intense and rare events)
at subseasonal and seasonal scales [HN-P; YS-P; QY-P].
The main goals of the techniques were to reduce the
number of model parameters to make them workable
with short-term Numerical Weather Prediction (NWP)
datasets and to preserve statistically significant observed
trends for seasonal forecasts coming from Global Climate
Models (GCMs). Concerning post-processing, new tech-
niques were introduced for bias correction [JSL-P1] and
error modelling [JB-P]. They provided local corrections of
global hydrological models and produced statistically reli-
able long-range (annual) forecasts for ephemeral rivers
[JB-P].

In conclusion, the improvements brought by pre/-
post-processing techniques were conditioned on many
factors: the catchments' characteristics ([GM-P];
Matthews et al., 2022), the hydrometeorological variable
[AC-P], and the method implemented [FJ-P]. In fact,
many presentations suggested that selecting suitable
methods is rather application-dependent [WP-K; FT-P;
WG-P; AB1-P]. In some cases, applying both pre- and
post-processing techniques is not feasible in an opera-
tional context due to resource limitations; consequently,
the selection of only one technique is not trivial (Tiwari
et al., 2021; Valdez et al., 2022). Matthews et al. [GM-P]
suggested that, at the medium-range time scale, it should
be preferred to correct hydrological model errors rather
than meteorological forcing errors, if a choice had to be
made. However, other studies highlighted that seasonal
streamflow forecast skill can be improved and extended
by using pre-processing techniques, as climatology and
precipitation biases can limit streamflow predictability
[LA-P; IP-P; KB2-P]. Bogner et al. (2022) showed that
using both pre- and post-processing techniques can
extend the skill of streamflow forecasts (below, above,
and under normal conditions) up to 1 week ahead, when
compared to using pre-processing alone [KB2-P].
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2.4 | Effective uncertainty
communication

Effective communication of forecast uncertainty is
needed in order to translate the technical improvements
of the Hydrologic Ensemble Forecasting Systems (HEFS)
into practical benefits ([ES-K; WP-K]; Spiegelhalter,
2017). The complexity lies in delivering user-specific
information since users typically differ in their back-
ground and decision processes, thus requiring different
types and amounts of information for decision-making
[AG-P; ACER-P; AB2-P].

Uncertainty communication is effective when the
information provided to users is simple, clear, relevant,
and trustworthy (Thielen-del & Bruen, 2019). Interpret-
ing unnecessary and complex information can be time-
consuming, posing an obstacle when a quick response is
required. Additionally, forecast literacy varies since dif-
ferent flood decision makers (e.g., farmers, local govern-
ment officers, civil protection agents) will have different
experience and exposure to forecasts. Therefore, products
that simplify and summarise information may be more
appropriate and preferred. Many interactive and user-
tailored platforms were presented at the workshop. Some
of them allow the user to choose between different fore-
cast products [DDB-P; CP-P], and others provide quanti-
tative forecasts with either verification [BvO-P2] or
uncertainty classification [RH-P], preparing probabilistic
forecasts for operational use. Other platforms are
designed to train and educate users, representing a valu-
able tool for operators who lack experience with probabi-
listic forecasts [SH-P; LN-P].

The evaluation metrics and the visualisations used
play an essential role in this aspect since the way in
which the information is presented affects the perception
of uncertainty ([ES-K]; Demeritt et al, 2019;
Pappenberger et al., 2013). The choice of metrics used in
emergency response and hazard warning can influence
the decisions made [JSL-P1; DH-P; HH-P]. It is also
important to use metrics that are appropriate to specific
situations (e.g., evaluating event-based flash-flood and
flood extent maps) [DPR-P; HHP; RH-P] and translating
forecast improvement into monetary benefits ((HMS-P1;
QJW-P; KH-P]; Cloke et al., 2017). However, when emer-
gency actions involve the population's cooperation
(e.g., evacuations), how uncertainty is addressed is more
important than its visualisation [ES-K], since not the
entire population has access to a web forecast or TV
(e.g., remote areas or rural communities with only radio
communication systems).

Creating a system in collaboration with end-users can
narrow the forecast uncertainty and improve decision-
making [HMS-P1; QIW-P; KH-P]. This exchange allows
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forecasters to know what information is relevant to users
(e.g., data dimensionality, the amount of detail, etc.) and
how to represent it to reflect the scientific confidence in
the prediction without ambiguity (Stephens et al., 2012).
Co-production seems to be pivotal to make the forecast
quality-value relationship more direct and to tailor uncer-
tainty communication to the decision needs (Barnhart
et al., 2018).

3 | CO-PRODUCTION OF
HYDROLOGICAL SERVICES AND
INCORPORATION OF LOCAL
KNOWLEDGE

31 |
chain

The hydrological services value

At the local level, decisions are made based on multiple
knowledge sources (e.g., forecasts, monitoring informa-
tion, local experiences and knowledge, and environmen-
tal signs). In his keynote, Werner [MW-K] argued that
building an effective warning service, and providing
data/information that is actually used, relies on in-depth
understanding of users' knowledge, perceptions, motiva-
tions to act, and the options available to them.

The hydrological (climate) services value chain
(Figure 6) shows the multiple actors that are involved in
the service provision, from (global) data providers to local
users. At each step, value is added through contextualis-
ing and tailoring data provided, which is purported to
lead to better decisions for hazards, water resources, and
sectoral information provision (see Section 6 for further
discussion on applications and decision-making). The
uptake of forecast information and warnings can, how-
ever, be limited by challenges in translating scientific
information into actionable information that matches the
local context and experience of intended users. Effective
communication through translators of scientific informa-
tion (service purveyors) is then a key element of the value
chain. Such human-centred services, that is, communi-
cating science-based warnings in the (visual) language
that people speak (e.g., using environmental cues, signs
that people see outside of their windows) could lead to
more people taking action [MW-K], and ongoing
research is exploring this, through the concept of Living
Labs (Veeckman & Temmerman, 2021) and co-
production of research and climate services with the
decision-makers and communities using them (Contreras
et al., 2020). This advances the current state-of-the-art to
user-centred services that are both useful and usable
(Vincent et al., 2018), and requires the integration of the
knowledge and needs of the users in a reverse direction
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FIGURE 6 Workflow of the ‘Climate Services Value Chain’, from Werner's keynote presentation [MW-K] and at the core of the EU-
H2020 project I-CISK (Innovating Climate services through Integrating Scientific and local Knowledge; https://icisk.eu)

(Figure 6), ultimately all the way through to the providers
of climate and hydrological data.

Golding et al. (2019) argue that focussing on the
entire weather-related hazard warning chain, and on its
connectivity, is key toward implementing more effective
warning systems. The chain includes sensor technology,
atmospheric, environmental and socio-economic model-
ling, communication science and behavioural psychology.
To develop an evidence-based bi-directional value-add
decision-making chain that is fully integrated, multi-
disciplinary research and trans-disciplinary research,
tools, and data are necessary [MW-K]. This includes sci-
ence, focus groups, stakeholder interviews, and creative
methods such as serious games and storytelling work-
shops (Crochemore et al., 2021; Van Loon et al., 2020).
These interdisciplinary tools can help establish jargon-
free communication and effectively contribute to building
community resilience to hazards, alongside more tradi-
tional methods (Van Loon et al., 2020).

A relevant example is the use of seasonal forecasts
and drought warnings by farmers in Malawi ((MW-K];
Calvel et al., 2020; Mittal et al., 2021; Streefkerk
et al, 2022). Through focus group discussions,
researchers developed an understanding of the seasonal
calendar of local farmers' activities. They show that sea-
sonal forecasts are useful to local farmers when the

information these forecasts contain focus on environ-
mental cues the farmers recognise locally, such as wind
and temperature patterns. Another example is the flash
flood warning research by Bucherie et al. (2022). Through
community engagement (i.e., community walks through
the local area, drawing exercises, and focus group discus-
sions), they demonstrate that local communities have a
good understanding of where flash floods happen and
their triggers, and that there is a complementarity
between (global) scientific datasets and local knowledge
that should be harnessed.

The following subsections give an overview of the var-
ious forms that co-production and incorporating local
knowledge and information can take, exemplified by case
studies presented during the workshop.

3.2 | Service co-development

As technical and scientific capabilities evolve, there are a
growing number of large-domain forecasting systems
available (e.g., the Global Flood Awareness System [Glo-
FAS], the Global Flood Forecasting Information System
[GLOFFIS], World-wide Hydrological Predictions for the
Environment [HYPE] and the C3S hydrological predic-
tion system; Emerton et al., 2016). Large-domain systems
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can provide information where there is limited existing
capacity locally. Additionally, international centres have
the computational power and resources to provide
ensemble forecasts for longer lead times, as well as re-
forecast and reanalysis datasets to support forecast evalu-
ation. However, national/local forecasting agencies have
a better understanding of the local context, the mandates
to issue warnings, and links with other national and local
agencies [ES-K]. In this context, global-local collabora-
tion is vital. A successful example of a global-national
collaboration is between GloFAS and the Bangladesh
Flood Forecasting and Warning Centre (FFWC) to
develop extended-range forecasting capacity on the Brah-
maputra River. In a two-step process, 15-day GloFAS
forecasts are used for pre-activation and FFWC forecasts
are used for decision-making on shorter lead times of up
to 3 days [ES-K].

To ensure that forecast products are useful locally,
their design should be informed by users’ needs and
decision-making context, through regular consultations
with users during the product design phase [CB-P; FW-P;
WP-K]. Additionally, Baugh et al. [CB-P] argued that
product dissemination should be user-tailored so that the
most adequate dissemination method (e.g., operational
web platform, direct integration into the users' systems) is
used. To enhance users' uptake of co-developed products,
forecasting centres should complement their operational
systems with tools such as user guides, wikis, tutorials,
FAQs, support portals, facts sheets, infographics, and
visuals of forecast skill assessment [SH-P; LS-P]. Users
with more resources may wish to actively participate in
the service design. This can be enabled by sharing tools
and methods to allow for easy experimentation and inte-
gration of developments by local users [BvO-P1].

Predicting usable information (e.g., available water
for consumptive use) is a combination of (1) current
information (e.g., water available in storage), (2) opera-
tional information (e.g., annual releases by a reservoir
company), and (3) forecasts (e.g., seasonal forecast of
inflows into storage) [MW-K]. While many operational
systems provide (1) and (3), operational information
(2) is not often incorporated. Several presentations dem-
onstrated the added value of incorporating water man-
agement requirements into the development of a
forecasting system:

« The use of water supply—-demand curves for water allo-
cation in the Murray Darling Basin (Australia) [KH-P].

« The prediction of inflows into storage to the end of sea-
son using seasonal forecasts to support decision-
making on available water for consumptive use in the
Murrumbidgee irrigation District, also in the Murray-
Darling basin ([MW-K], Kaune et al., 2020)
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« The development of a large-domain modelling frame-
work for ensemble forecasting from which to tailor
local to regional water management applications and
develop risk-based strategies for operating reservoir
systems in the USA [AW-P].

« An assessment of the economic impacts of the imple-
mentation of forecast-based allocation rules on the
Jucar River system (Spain), using agricultural and
hydropower impact measures and environmental sta-
tus metrics [HMS-P1].

« The promotion of the integrated management of
droughts and floods by bringing together various actors
(e.g., water agencies, hydrometeorological institutes,
energy and transport sectors, civil protection, water
users, early warning institutes) in the Madeira River
Crisis Room [MdM-P]. This was established in 2015
under the coordination of the Brazilian Water Agency
(ANA), in the aftermath of the 2014 Madeira River
Basin summer floods.

These presentations demonstrated the potential for
improving forecasts by combining hydroclimatic forecast-
ing expertise with local system knowledge. They also
highlighted that forecasts are valuable and can lead to
economic benefits (Cassagnole et al., 2021), but that there
is still room for cooperation between water sectors.

Additionally to incorporating local knowledge, local
data is a key element of larger-domain hydro-
meteorological systems, yet in many cases there are chal-
lenges due to confidentiality, lack of standardisation and
quality control. Subsequent sections discuss the impor-
tance of incorporating local data through, for example,
data assimilation (Section 4), model calibration and
regionalization approaches to upscale local information
(Section 5.2).

3.3 | Application and locally relevant
evaluation

There are different perspectives when examining forecast
quality (Anctil & Ramos, 2018; Troin et al., 2021; Werner
et al., 2018). According to Werner [MW-K] and Stephens
[ES-K], forecast evaluation should be user-defined to
demonstrate applicability of the forecasts, based on vari-
ables of interest and for spatial and temporal scales of
interest to users. Several studies presented evaluation
results for and/or in collaboration with a specific user
and are described in more detail in Section 6. In order to
facilitate decision-making and forecast evaluation locally,
more international and interdisciplinary data sharing is
essential (e.g., through the Copernicus Climate Data
Store, CDS 2022) [SH-P].
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Local hydro-climatic conditions are important drivers
of forecast performance, as shown by Pechlivanidis et al.
[IP-P], discussed in Section 2.1. While the availability of
global products is vital in data-scarce regions, their qual-
ity varies greatly locally. It is therefore important to
assess their suitability over regions of interest (relevant
presentations include [MW-P; MB1-P]). Bernhofen et al.
[MB1-P] assessed the role of global datasets for flood risk
management at national and catchment scales. They
showed that national flood risk estimates calculated
using different global datasets vary significantly, and
encouraged the use of a combination of multiple global
datasets to report flood risk in order to reduce the uncer-
tainty associated with using a single dataset ((MB1-PJ;
Bernhofen et al., 2021, 2022). In addition, global datasets
should be benchmarked against each other to better
understand sources of model bias and uncertainties, and
to support their informed application by end-users
(Hoch & Trigg, 2019).

Several authors compared global with catchment-
based models/systems for water sector applications in
various parts of the world [DM2-P; DR-P; FF-P1]. In their
comparison of GloFAS and a catchment-based model for
flood forecasting in Uganda, Mulangwa et al. [DM2-P]
showed that the catchment-based model works better
overall for smaller basins, while GloFAS performs better

Model Ensembles
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in larger basins (see Section 5.4 for more information).
This demonstrates that GIoFAS can be used as an interim
solution for countries without local forecasts, though
only for basins above a certain size. Similarly, Robertson
et al. [DR-P] compared catchment-scale forecasts from
the Bureau of Meteorology against GlIoFAS seasonal fore-
casts for catchments across Australia. They showed that
catchment-based forecasts tend to be more skillful and
reliable for their specific application, while global fore-
casts are more skilful when hydrological processes are
less important (e.g., wet season in the tropics), and are
better at discriminating high and low flow seasons in
comparison to actual flow volumes.

4 | EOAND DATA ASSIMILATION

EO provides scale-relevant measurements of hydrological
variables, enabling streamflow modelling and forecasting
even in data scarce regions [PD1-P]. Connecting EO-
based temporally discrete snapshots of dynamic pro-
cesses, however, requires assimilation into process-based
models to characterise their temporal evolution
(Figure 7). Hydrological data assimilation (DA) is rapidly
evolving to match the unprecedented progress in observa-
tion capabilities. It has been frequently applied for state

Data

Assimilation

Assimilated Forecast

Observations (Lower Uncertainty Bounds)

Schematic showing the role of Earth observations and data assimilation in the context of modelling and ensemble
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estimation, dynamic parameter estimation, closing the
water balance, and uncertainty estimation (Dasgupta
et al. 2021). The rise of machine learning (ML), big EO
data, and cloud computing, has unlocked new opportuni-
ties for the development of next-generation hybrid
model-data integration methods (Geer, 2021). This
section reviews the state-of-the-art in the field of EO-DA
presented at the workshop.

4.1 | Advances in earth observations of
the hydrosphere

Schumann [GS-K] introduced the state-of-the-art in the
field of EO and DA, highlighting the potential of impact-
level forecasting using emerging technologies in EO and
big data processing. Satellite imagery is constantly
improving in terms of spatial and temporal resolutions,
making EO more useful for local-scale applications in
hydrology. Rainfall measurement missions on board
nanosatellites have recently been launched, leveraging
novel sensor technology, which can improve weather
forecasts  through  model-data-integration  (Jales
et al., 2020). Recent advances in ML have made on-board
EO-based flood mapping (Mateo-Garcia et al., 2021), pre-
diction of physically consistent flood observations
(Litjens et al., 2021), and real-time water level forecast-
ing (Google HydroNets) operationally feasible, as shown
in Shalev et al. ([GS-P]; Nevo et al., 2022). Lack of appro-
priate training data for ML and the incorporation of
physical principles within ML networks were identified
as open challenges, requiring routine evaluation, diagno-
sis, and domain-knowledge integration to deliver more
skillful predictions globally. Furthermore, the large quan-
tities of training data necessary for deep learning
(DL) could additionally be sourced from smartphone
camera pictures and videos, or from social media, along
with leveraging generative models, such as Generalised
Adversarial Networks or GANS, to produce synthetic data
for data-scarce regions (Bentivoglio et al., 2022). More-
over, Physics Informed Neural Networks (PINNSs) also
hold promise for flood modelling in combination with
methods from deep Gaussian processes or Bayesian neu-
ral networks to evaluate model and data uncertainties
through probabilistic hazard mapping (Mahesh
et al., 2022).

Jurlina et al. [TJ-P] used such domain-knowledge
integration, where a Random Forest classifier was trained
to predict climatological river flow percentiles. They used
a variety of static and dynamic satellite-based inputs,
with surface soil moisture (SSM) emerging as the most
important feature for shorter lead times. Satellite remote
sensing in combination with ML was also used for water
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budgeting using a variety of inputs (Adedeji et al., 2020),
with geology and rainfall emerging as the dominant con-
trols on groundwater recharge and distribution patterns
(Orimoloye et al., 2021). EO satellites also enable large-
scale observation of evapotranspiration (ET), which is
important for closing the water balance in large basins
and is challenging to measure in the field. Chen et al.
(2021) showcased a new high-resolution multi-source
merged satellite ET dataset, prepared by modifying the
surface energy balance method, which outperformed
existing datasets [XC-P].

EO also provides an invaluable resource for the spa-
tial error assessment of ensemble forecasts, as shown by
Hooker et al. [HH-P]. The authors used a normalised spa-
tial map comparison metric to assess the spatial skill of
GloFAS forecasts on the Brahmaputra river, providing a
comprehensive measure of uncertainty at various scales
(Hooker, Dance, et al., 2022b). The Fraction Skill Score, a
domain averaged score, was then computed to determine
the scale at which the forecast becomes useful, which
could help in presenting model outcomes to end-users, or
for model development and data assimilation (Hooker
et al., 2022b). Such investigations will soon be supported
by the CEMS Global Flood Monitoring (GFM;
CEMS, 2021) product, as demonstrated by Hostache [RH-
P], which provides near real-time and historical flood
maps based on Sentinel-1 acquisitions. Unrestricted
access to high-accuracy SAR-based flood extent maps
alongside estimates of uncertainty will open up new
opportunities for model error diagnosis, forecast evalua-
tion, and data assimilation (Dasgupta et al. 2021). Previ-
ously, historical flood risk and discharge were calculated
using much coarser optical (MODIS) and passive micro-
wave data (AMSR-E/2, TRMM, GPM) by the Dartmouth
Flood Observatory, which allowed the assessment of
flood exposure over several decades (e.g., Tellman
et al., 2021). Kettner et al. [AK-P] showed that the addi-
tion of high-resolution SAR and optical data, provided by
the Copernicus Sentinel satellites, has further facilitated
examining the relationship between flood extents for flow
magnitudes corresponding to different return periods.

Despite significant advances in SAR-based flood
detection algorithms, the problem of mapping inundation
dynamics in urban areas, where most people and assets
are located, still remains challenging due to complex scat-
tering mechanisms (Shen et al., 2019). For instance, the
GFM product masks these areas out due to the lack of
appropriate globally applicable algorithms to detect
urban inundation, as discussed in [RH-P]. However,
[DM-P] developed a new method for detecting flooding
in dense urban areas, using globally available datasets
including Sentinel-1 (S1) SAR data, the WorldDEM Digi-
tal Surface Model (DSM) and the World Settlement
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Footprint data, which could be promising for applications
at local scales. The algorithm based on change detection
uses pre- and post-flood S1 images to detect flooding in
the vicinity of walls aligned within 30° of the satellite
track. More details on the method can be found in Mason
et al. (2021). While this approach resulted in useful flood
extent detection in urban areas, the estimation of the cor-
responding inundation depths proved to be non-trivial,
especially when street widths equalled or exceeded the
DSM grid resolution, implying the need for higher resolu-
tion datasets.

4.2 | Optimising operational forecasting
using EO-DA

It is now well understood that assimilation of satellite-
based observations can help to reduce forecast spread
and uncertainty when utilising ensemble forecasts (see
extensive discussions in Beven, 2009; Cloke &
Pappenberger, 2009; Lahoz et al, 2010; Walker &
Houser, 2005). A prime example of progress in the field is
the European Commission's DestinE programme pre-
sented in a keynote by Sandu. This programme aims to
develop a highly precise digital model of the Earth
(Digital Twin) to monitor and simulate natural and
human activity [IS-K]. The possibility of a real-time
Earth-system digital twin, which optimally combines
simulations and near-real-time observations to monitor
the evolution of the Earth system, was only made possi-
ble through advances in DA primarily pioneered by the
field of meteorology (Bauer et al., 2021). The transition of
hydraulic flood modelling from a data-poor to a data-rich
science is relatively more recent compared to meteorol-
ogy, and thus the development of the first flood DA algo-
rithms has only emerged in the last decade. Dasgupta
et al. in [AD-P] proposed the use of mutual information
as a metric for the assimilation of EO-based flood extents
into hydraulic models, and investigated the feasibility of
targeted observation design for flood observations. The
assimilation was shown to be keenly sensitive towards
coverage with respect to reach morphology and timing
relative to the flood peak, while the assimilation of one
optimal image proved better than the assimilation of
multiple suboptimal images.

In a similar effort to optimise EO-DA for operational
forecasting in catchments facing persistent freshwater
scarcity, Erlingis et al. [JE-P] proposed a novel land data
assimilation system for drought monitoring in the West-
ern United States. The assimilation of Leaf Area Index
(LAI) was proposed to constrain the dynamic vegetation
model within Noah-MP, which led to improved estimates
of ET over agricultural regions, in addition to capturing
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drought severity. Similarly, the Australian Bureau of
Meteorology assimilates SSM to forecast the surface
water balance in Australia at a variety of spatiotemporal
scales [CPH-P]. Comprehensive forecast evaluations
showed positive skill scores for SSM and ET predictions
with up to 2 months lead time and for runoff with
1 month lead time, resulting from the SSM assimilation.
In Germany, the Terrestrial Systems Modelling Platform
developed by the Forschungszentrum Jiilich [HJHF-P]
simulates the coupled terrestrial water and energy cycles
using data assimilation of multi-source observations,
through a scalable Parallel Data Assimilation Frame-
work, allowing predictions across scales for different
applications.

Despite the widespread application of SSM for data
assimilation to improve the estimation and forecast of a
variety of hydrometeorological variables, the resolution
requirements cannot be met due to scale limitations in
passive microwave remote sensing. Given the sensitivity
of active microwave sensors towards SSM and vegetation
water content, SAR backscatter provides a high-
resolution alternative for assimilation into high-
resolution Land Surface Models (LSMs) to improve state
estimation. This novel technique was used for Sentinel-1
(at 1 km resolution) by Bechtold et al. [MB2-P], and
ASCAT (at 25 km resolution) backscatter assimilation by
Baguis et al. [PB-P]. Assimilation requires designing an
observation operator which maps the simulated state var-
iables (such as SSM and LAI) to the observation space
(backscatter predictions). The Water Cloud Model was
used as the observation operator in these studies, to simu-
late the backscatter as a function of the vegetation and
soil backscatter. The backscatter assimilation resulted in
both positive and negative impacts on forecast skill, espe-
cially deteriorating the forecast in areas where the LSM
simulated erroneous LAI values. However, the approach
holds promise for the future by providing methods to
integrate high-resolution observations into LSMs. High-
resolution observations of SSM and rainfall have long
been identified as gaps in generating more accurate
hydrological predictions (e.g., Alfieri et al., 2022), and the
EO community is constantly working on improving the
space-time granularity of satellite hydrology datasets
(e.g., Filippucci et al., 2022; Peng, Albergel, et al., 2021;
Peng, Tanguy, et al., 2021). The development of such
high-resolution backscatter-based assimilation methods
is necessary to ensure the quick uptake of these newly
produced datasets.

For basins where snowmelt processes dominate run-
off, operational forecasting presents substantial chal-
lenges due to the complex catchment response towards
snow cover variability. To optimise operational stream-
flow forecasting for Quebec, Canada, Odry et al. [JO-P]
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proposed Bayesian multi-model forecast merging, but
limited sensitivity to the prior distribution was observed
and large differences in the skill of different models
resulted in insignificant overall improvements from the
merging. Yamada et al. [MY-P] showed improvements in
water level prediction accuracy by incorporating river
cross-section data into a high-resolution rainfall-runoff-
inundation model for Japan. MODIS snow products were
assimilated into the conceptual hydrological model HBV
by Uysal et al. [GU-P] to improve forecasts and increase
prediction horizons for the snow-dominated Karasu
Basin in Turkey. Similarly, Casson et al. [DC-P] assimi-
lated in situ and remotely sensed observations of frac-
tional snow cover and albedo wusing perturbed
observation Particle and Ensemble Kalman Filters in the
North American Rocky Mountains. For Germany, Weier
et al. [JW-P] showcased the soon-to-be operational
HydPy unified modelling and data assimilation frame-
work, based on OpenDA and Python, which is capable of
assimilating multi-source observations and combines sev-
eral conceptual models.

Altimetry assimilation for streamflow forecasting is
set to be revolutionised by the imminent launch of the
Surface Water and Ocean Topography (SWOT) satellite
mission, which will provide 2D water surface elevation
grids for all channels across the world >100 m in width.
Pedinotti et al. [VP-P] demonstrated with an application
to the Niger and the Congo river basins, the comparative
performance assessment of water levels derived from
SWOT discharge and water levels from the HydroWeb
database, which contains water levels time series of large
rivers based on altimetry data. The potential of DA to
consistently improve simulated discharge estimates was
demonstrated, and observation localization in space and
time was shown to be critical for SWOT data.

4.3 | Limits to predictability of
hydrological variables

Despite the best attempts to capture scale-dependent
dynamic process variability in the current generation of
hydrological models, the intrinsic uncertainty of natural
processes nevertheless limits predictability. Dimitriadis
et al. (2021; [PD2-P]) measured the scale-dependent vari-
ability of hydrological processes and found that fractal
behaviour is exhibited at small-intermittent scales and
long-range dependence is evident at large scales, which
indicates low predictability. However, attempts to lever-
age advances in EO and ML to improve hydrologic pre-
dictability persist. For instance, Keppler et al. [RK-P]
used a Convolutional Long Short Term Memory network
(ConvLSTM) to assimilate streamflow into a distributed
hydrological model. While the ConvLSTM improved the
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forecasts in the absence of input errors, it degraded the
forecasts otherwise, due to the abridged input sequence
and because the model could not capture long-term soil
moisture and snow pack variability. Musuuza et al. [JLM-
P] found that the assimilation of a variety of EO-based
snow cover and ET products, along with in situ flow mea-
surements, was unable to increase forecast skill during
spring and summer due to incomplete snowmelt infor-
mation and large flow errors. Bahramian et al. [KB1-P]
similarly used data assimilation to improve SSM forecasts
and found that the forecast improvements persisted for a
maximum of 9 days for SSM and up to 16 weeks for the
root zone soil moisture, but did not extend to seasonal
scales.

5 | IMPROVING HYDROLOGICAL
SIMULATIONS

A key tool for hydrologists is the hydrological model
itself. However, no model perfectly replicates reality due
to limited knowledge of the water cycles processes, and
limited computational and data resources. The workshop
presented a snapshot of the advances made and chal-
lenges faced in developing hydrological models.

5.1 | Physically based model
development

Dynamical models are based on the physical laws dictat-
ing catchment processes. The increasing availability of
data and computational resources has allowed for more
complex models (Bates, 2022). Model choice should
depend on several factors including intended use, spatio-
temporal scale, and available computational resources
(Horton et al., 2022; Pechlivanidis et al., 2011). Hence,
several hydrological models were used in the presented
studies. However, two separate but interlinked pathways
for improving physically based model simulations were
identified: increasing resolution and model coupling.
Model resolution has been increasing over the past
several decades (Bierkens et al., 2015; Hoch et al., 2022;
Melsen et al., 2016; Wood et al., 2011), largely facilitated
by increases in computational resources (Bauer
et al., 2021) and large observational datasets (Beven
et al., 2015; Wilby, 2019). Overall, the skill of simulations
has improved as a result (Beven et al., 2015; Habibi
et al., 2019; Magnusson & Killén, 2013). In her keynote,
Sandu [IS-K] outlined three key benefits of high-
resolution (or hyper-resolution, <1 km) modelling:
(1) more processes are resolved at these scales allowing
for more realistic simulations, since some processes no
longer need to be represented via parameterisation

85UB017 SUOWILLOD BAIERID 3|qeotjdde au) Ag pausenob a1e 3 e O ‘88N JO'Sa|nJ o Akeiq1T 3Ul|UO AB|IM UO (SUOIPUOO-PUR-SLLBYWI0D" A3 | 1M Afe.q 1 )BU1 U0//STNY) SUORIPUOD PUe SWwiia | 84} 83S *[£202/70/22] Uo Ariqiauljuo AB|im ‘Banoquisxn aueyooD A 0882T €4 /TTTT'0T/I0p/ W00 A3 |1M Aselqifpul|Uo//SA)Y Wouy papeo|umoq ‘0 ‘XBTEESLT



DASGUPTA ET AL.

schemes (Roberts et al., 2018); (2) model resolution will
be closer to the scale of observations, which can be both
challenging and beneficial for processes such as data
assimilation and verification (Crocker et al., 2020;
Erlingis et al., 2021; Fiddes et al., 2019); and (3) simula-
tions may be more useful for local decision making on a
day to day basis (Habibi et al., 2019). Several presenters
showed results from high-resolution models including
Munier et al [SM-P], who presented the improved perfor-
mance of a river routing model after an increase in reso-
lution from 1/2° to 1/12°. Belleflamme et al [AB-P]
showed the skill of 10-day and seasonal drought forecasts
at a resolution of 600 m for use in the agricultural sector.
Flash flood modelling [CB-P, MY-P, TS-P] is also a key
area that benefits from (and requires) high-resolution
models due to the ability to resolve convection and cap-
ture the variability in soil moisture (Hapuarachchi
et al., 2011; Lovat et al., 2019). Sayama et al. [TS-P]
showed that a 150 m resolution national rainfall-runoff
model was able to predict two flash flood events reason-
ably well, although with large uncertainty in some loca-
tions due to the 5 km meteorological forecast being
unable to confidently predict the location of the storm
(Sayama et al., 2020).

Sandu [IS-K] noted how high-resolution models made
scaling effects and computational efficiency key consider-
ations for current and future projects ([GS-P], Bauer
et al., 2021; Donahue & Caldwell, 2020; Yepes-Arbods
et al.,, 2022). However, as also noted by Sandu [IS-K],
higher resolution may not reduce uncertainty (Beven
et al., 2015; Costanza & Maxwell, 1994; Wedi, 2014). On
the other hand, technological advancements could allow
for  larger ensemble forecasting (Cloke &
Pappenberger, 2009; Wu et al., 2020), providing valuable
information regarding prediction uncertainty (Section 2).
Thus, it may be best to focus on increasing ensemble size
rather than model resolution in certain applications ([PZ-
P]; Scaife et al., 2019).

Due to the complexity of the Earth system, the cou-
pling of models that replicate different components of the
water cycle is often required to make realistic simulations
(Ning et al., 2019; Xu et al., 2005). Models can be coupled
sequentially (one-way coupling) with the output of one
model forcing a second model. For example, the outputs
from NWP systems are often (both in practice and in
many of the workshop presentations) used to drive
hydrological models, allowing the forecast horizon to be
extended (Bartholmes & Todini, 2005; Cloke &
Pappenberger, 2009; Emerton et al., 2016). User-specific
models can be coupled to hydrological models in this
way to make bespoke forecasts. For example, De Vera
et al. [ADV-P] coupled a rainfall-runoff model (GR4J), a
routing model (Muskingum), and an electric system
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model (SImSEE) to produce 7-day forecasts of the optimal
dispatch of the G. Terra reservoir (De Vera et al., 2021).

Alternatively, models can be fully coupled (two-way
coupling) in an ESM approach, where all relevant aspects
of the Earth system including atmospheric, ocean
(including waves and sea ice), and terrestrial energy,
water and biogeochemical dynamics are interactively
coupled (Clark et al., 2015; Harrigan et al., 2020; Steffen
et al., 2020). Ideally, human activities are also included in
ESMs (Miiller-Hansen et al., 2017; Pokhrel et al., 2016).
Several presented studies focused on the implementation
and evaluation of these fully coupled systems. These
highlighted the increasing prominence of Earth system
modelling at global ([LS-P; IS-K]; Flato, 2011;
Prinn, 2013) and regional ([BN-P; HL-P; HJHF-P; CPH-
P]; Giorgi & Gao, 2018; Elizalde et al., 2010) scales. For
example, DestinE's ‘Digital Twin’ (Section 4.2) will com-
bine all parts of the natural environment as well as
related human activities in an attempt to capture the
mutual feedback processes involved, and potentially to
improve simulations [IS-K]. Additionally, it is expected
that the hydrological components will be fully coupled to
the atmospheric components, made feasible by the high
resolution of the models. This will allow, for example,
large rivers to impact the surface meteorology by feed-
back mechanisms ([IS-K]; Boussetta et al., 2021, Ning
et al.,, 2019). Hendricks-Franssen et al. [HIHF-P] pre-
sented case studies of the coupled Terrestrial Systems
Modelling Platform, which couples the atmospheric
ICON model with the CLM land surface model, and the
subsurface hydrological model ParFlow. By modelling
the coupled terrestrial water and energy cycles, the sys-
tem is able to predict crop yield, soil moisture, and flash
floods with a higher accuracy. Lewis [HL-P] coupled the
UK Met Office Unified Model with the land-surface
model JULES, and with ocean and marine ecosystem
models (NEMO, WWIII, and ERSEM). This resulted in
an improved simulation of the vertical salinity and tem-
perature profiles in near-coastal waters compared to
climatology.

Coupled models are computationally expensive and
their verification is complex (Grimaldi et al., 2019). Addi-
tionally, the optimal coupling method is not obvious par-
ticularly given the varying spatiotemporal scales at which
different processes occur (Gentine et al., 2012). Several
frameworks for coupling models have been developed in
recent years (e.g., Hoch et al., 2019). Hendricks-Franssen
et al. [HF-P] used OASIS-MCT, a model coupling library
(Valcke, 2013), in their study allowing them to model all
components of the terrestrial system and include a higher
resolution sub-domain. Alternatively, Eilander et al. [DE-
P] presented a new framework, HydroMT, for coupled
modelling of compound flood simulations (Eilander
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et al., 2022). This open-access framework allows models
to be set-up automatically given the appropriate datasets
(Eilander & Boisgontier, 2022).

5.2 | Uncertainty in dynamical models

In this section, we discuss model structure and model
parameter uncertainty (Moges et al., 2021). Model struc-
ture uncertainty may be reduced by increased fidelity of
process representation (Section 5.1); however, this may
not produce more useful forecasts (Section 2.1). An alter-
native method, used in several of the presented studies
[LS-P; GU-P; FW-P; LN-P; CP-P], is to use a multi-model
ensemble (Dion et al., 2021; Troin et al., 2021). In addi-
tion to improved forecasts (e.g., [LN-P]), multi-model sys-
tems offer opportunities for co-production leading to
more usable forecasts ([FW-P], Section 3). However, con-
struction of a multi-model system has many challenges,
including the choice of models, communication
(Section 2.3) and use of the output (Sections 3.2 and 6.1).
The combination of multi-model forecasts is not trivial
and is an active area of research (Wan et al., 2021).

Model calibration is used to reduce model parameter
uncertainty (Moges et al., 2021; [TBTP-P]). Data scarcity
hinders model calibration ([PD1-P]; Beven and Cloke,
2012) at the global [SG-P], continental [CM-P], and
catchment scales [DH-P; MW-P]. One approach to over-
come data scarcity is the use of alternative data sources,
such as reanalysis [MW-P; DH-P], to calibrate the model
of interest. However, Wanzala et al. [MW-P] showed that
different reanalysis datasets resulted in large variation in
predictive skill and affected the robustness of the esti-
mated parameters. Alternatively, increasing EO data
(Section 4) could provide the necessary observations for
data sparse regions [GS-K].

In large-scale hydrological modelling, regionalisation
methods can transfer knowledge from gauged to
ungauged basins. Beck et al. (2020; [HB-P]) used transfer
equations relating model parameters to catchment and
climatic characteristics to yield global parameter maps
for the LISFLOOD hydrological model. Alternatively, Sei-
bert et al. ([JS-P]; Pool and Seibert, 2021) used calibrated
model parameters of selected gauged catchments for
ungauged catchments with similar characteristics. Maz-
zetti et al. [CM-P] overcame temporal data sparsity,
where observations have different temporal resolution to
the model, by aggregating the model output to match the
daily resolution of the observations.

In some flood forecasting systems, model uncertainty
can lead to inconsistencies between forecasts and
observation-based flood thresholds. Therefore, some
global flood forecasting systems, such as GloFAS, use rea-
nalysis to define the flood threshold to account for these
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biases. However, Zsoter et al. (2020; [EZ-P]) showed that
lead-time dependent ensemble reforecast-based thresh-
olds provide even more reliable and skilful flood forecasts
for longer lead-times since biases in the forecast due to
the use of NWP models rather than meteorological obser-
vations are also accounted for.

5.3 | Data-driven and hybrid methods
Machine learning (ML) techniques have become increas-
ingly common in hydrology over the past couple of
decades (Lange & Sippel, 2020; Mosaffa et al., 2022;
Mosavi et al.,, 2018; Shen et al., 2021; Shen &
Lawson, 2021; Xu & Liang, 2021). This was accelerated
by the progress made in developing deep learning algo-
rithms as well as by an increase in the availability of large
hydrological datasets (Shen et al., 2019). The long short-
term memory (LSTM) was a popular choice of algorithm
in the presented studies [YZ-P; GS-P; RK-P]. The LSTM
is a type of neural network that allows the autocorrela-
tion often seen in hydrological variables to be modelled.
It is commonly used in hydrology for simulation, fore-
casting, and hydroclimate predictions (e.g., Kratzert
et al., 2018; Le et al., 2019; Natel de Moura et al., 2022).
Both Zhou et al. [YZ-P] and Shalev et al. [GS-P] used
LSTM models to predict water level and flood inunda-
tion. Zhou et al. [YZ-P] found that their deep-learning
water-level simulations showed only minor differences to
the output from a 2D-hydrodynamic model although they
were produced much faster with LSTM (Zhou
et al.,, 2021a, 2021b). The LSTM-generated stage forecasts
of Shalev et al. [GS-P] had a high median NSE (~0.97)
across the tested basins. However, Keppler et al. [RK-P]
had varying success using an LSTM approach within a
data assimilation framework (see Section 4.3). Olusola
et al. [AO-P] used the simpler, more computationally
inexpensive random forest algorithm to predict the spa-
tial variability of groundwater. They found that geology
and rainfall were the variables with the greatest weight
in the calculations. Additionally, Forouhar et al. [LF-P]
used a Multi-Layer Perceptron Artificial Neural Network
to forecast short-term irrigation water demand. They
found that, although the forecasts had a skill comparable
to previous studies, the lack of inclusion of physical
understanding of the system limited the performance of
the method. This is a common criticism of ML or statisti-
cal methods ([LS-K]; Gilpin et al., 2019; Schmidt
et al., 2020; Nearing et al., 2021). Methods such as
physics-informed ML (e.g., Bhasme et al., 2021; Herath
et al., 2021) have been suggested as potential solutions,
although it is acknowledged that more research is needed
in this area to constrain ML predictions to physically
plausible values ([LS-K]; Kratzert et al., 2019).
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While some presentations discussed purely data-
driven methods (e.g., [GS-P; AO-P]), there was a strong
emphasis on hybrid data-driven and physics-based
methods throughout the workshop. During a keynote
talk, Slater [LS-K] discussed how the hybrid methods
benefit from state-of-the-art developments in ML
(e.g., increased speed) and physics-based modelling
(e.g., physical understanding of the system). As dis-
cussed by Slater [LS-K], the combination of data-driven
(particularly ML and deep learning methods) and
physics-based methods has the potential to solve some of
the outstanding challenges in hydrology, such as incor-
porating human activity into hydrological simulations
and generating seamless predictions across time scales
(Slater et al. 2022). Statistical methods can be introduced
to dynamical systems throughout the forecasting chain
(e.g., data assimilation [RK-P], ensembling [LS-K], post-
processing [KB-P; AC-P], and evaluation [IP-P]) to
reduce biases, for operational convenience, and to
improve nonstationary modelling [LS-K]. However, as
ML techniques are introduced into systems, they must
be evaluated to ensure robust and plausible forecasts,
and be benchmarked against traditional physics-based
systems [LS-K].

An example of a hybrid system given by Slater [LS-K]
is that of a seasonal streamflow forecast generated by
driving a statistical model with the basin-average har-
vested corn and soybean acreage, and precipitation fore-
casts from a GCM (Slater et al., 2021). Due to the short
training time of the statistical model, these models can be
updated regularly to account for changes in land use.
Driving ML algorithms with the output from physics-
based models is a common hybrid approach (e.g., Frnda
et al., 2022; Hauswirth et al., 2022; Hunt et al., 2022).
Two other presentations demonstrated the skill of hybrid
forecasts created in this way. Jurlina et al [TJ-P] created
river flow forecasts for up to 10 days ahead by driving a
random forest multiclass classifier with nine catchment
characteristics, SMOS and in situ observations, and
ECMWF forecasts. Golina et al [SG-P] compared fore-
casts of seasonal precipitation for the island of Ireland
generated by driving a Multiple Linear Regression (MLR)
and an Artificial Numerical Network (ANN) with predic-
tors based on ECMWF seasonal hindcasts for mean sea
level pressure. While the skill of these forecasts was sea-
son dependent, they consistently performed better than
purely physics-based forecasts.

5.4 | Model development for forecasting
across scales

There are currently several global- and continental-scale
hydrological forecasting systems in operation (Emerton
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et al., 2016). Additionally, many regions are covered by
basin or sub-basin scale systems. The benefits and chal-
lenges of using systems of both scales are discussed in
Section 3.2. In particular, there are knowledge gaps in
how forecasting systems at a range of scales can comple-
ment each other, and how global forecasting systems can
address local needs [DR-P]. To overcome this gap, [BvO-
P1] studied how a local forecasting system under devel-
opment can be used with a global dataset that is designed
to be executed on a global scale while supplemented by
local information. Additionally, Eilander et al. [DE-P]
presented a new framework (HydroMT) to automatically
and rapidly set up a flood risk model for compound flood-
ing anywhere around the globe. HydroMT is globally
applicable and locally relevant as it is based on globally
available data, with the inclusion of local data where
available. Alternatively, Odry et al. [JO-P] used Bayesian
merging to combine large and local-scale forecasts in
Quebec, Canada. The resulting forecasts performed as
well as or better than the individual forecasts, while
removing the need to look at two separate forecasting
systems.

Regardless of forecast accuracy, sufficient lead time is
essential to facilitate effective decision-making and pre-
paredness (Bradley et al. 2019). The workshop showcased
various presentations aiming to improve both short- and
long-term streamflow forecasts. For example, Uysal et al.
[GU-P] provide perspectives on advances and develop-
ments in improving short-range streamflow forecasts.
Arnal et al. [LA-P] presented preliminary results for the
Bow River at Banff (Canada), using a workflow designed
to quantify streamflow predictability on sub-seasonal to
seasonal (S2S) timescales across North America. Both
data-driven and process-based techniques are being
investigated to produce continental-scale S2S hindcasts
and quantify predictability [LA-P]. Such investigations
can potentially provide useful science-based information
for reservoir operations and water resource management
(Section 6.5). Additionally, some studies showed progress
in creating temporally seamless forecasts. Caillouet et al.
[LC-P] combined deterministic short-range and probabi-
listic medium-range forecasts with expert knowledge to
create a seamless forecast with the aim to optimise flow
management decisions. Alternatively, post-processing
(Section 2.2) was also utilised to extend the forecast hori-
zon [DM3-P; KB-P].

6 | APPLICATIONS AND
DECISION-MAKING

In this section, we summarise hydrological monitoring
and forecasting applications and their use in decision
making.

85UB017 SUOWILLOD BAIERID 3|qeotjdde au) Ag pausenob a1e 3 e O ‘88N JO'Sa|nJ o Akeiq1T 3Ul|UO AB|IM UO (SUOIPUOO-PUR-SLLBYWI0D" A3 | 1M Afe.q 1 )BU1 U0//STNY) SUORIPUOD PUe SWwiia | 84} 83S *[£202/70/22] Uo Ariqiauljuo AB|im ‘Banoquisxn aueyooD A 0882T €4 /TTTT'0T/I0p/ W00 A3 |1M Aselqifpul|Uo//SA)Y Wouy papeo|umoq ‘0 ‘XBTEESLT



Chartered Institution of ~ Journal of
18 of 44 W l L E Y_ Water and Environmental
Management

6.1 | Anticipatory humanitarian action
Stephens [ES-K] discussed the use of global flood fore-
casting for anticipatory humanitarian action in her key-
note talk. Historically, humanitarian action has typically
followed the occurrence of a disaster (Coughlan de Perez
et al., 2015). Now, there is a move towards triggering
actions based on forecast information at a range of lead
times (‘Forecast-based Financing” www.forecast-based-
financing.org; Stephens et al., 2012; Coughlan de Perez
et al., 2017). Stephens discussed a set of rationales for this
shift, including the potential to reduce impacts by taking
mitigating actions, a drive to better utilise state-of-the-art
forecasting science and an increasing interest in bridging
the gap between response and adaptation, while improv-
ing the cost-effectiveness of aid.

Taking action based on forecasts requires several con-
siderations, including user-driven evaluation to under-
stand forecast skill and reliability (Section 3.3). For
example, which forecasting system should be used?
While global models are available where no other fore-
casting system exists, and although they typically use
probabilistic approaches, they may not be equally skilful
everywhere. It is imperative that forecasts from national
services are used first and foremost for disaster risk
reduction. They can benefit from local knowledge, and
typically hold the mandate to issue warnings (see also
Section 3.2). A combination of models can also be benefi-
cial, complementing detailed local forecasts with larger-
scale context (e.g., transboundary information), and often
longer lead times from global models (Emerton
et al., 2016; Hirpa et al., 2018; see Section 5.4). Stephens
highlighted the decision-led evaluation of GloFAS fore-
casts for the Brahmaputra river system, based on
required lead times (e.g., 3 days for evacuation, 18 days
for agriculture planning), as part of the combined use of
GIoFAS and local forecasts from the Bangladesh FFWC
[ES-K].

Another example where a combination of models can
provide complementary information is predicting flood-
ing from tropical cyclones (TCs). Global NWP models
can capture large-scale atmospheric flow patterns that
influence TC movement, and other factors that influence
flood severity (Titley et al., 2021, [HT-P]). Global flood
models can add a hydrological perspective to comple-
ment the meteorological factors associated with flooding
from TCs [HT-P]. There have been several cases where a
combination of information from global, regional and
national services, and local knowledge from decision-
makers, have been used to take humanitarian action
ahead of flooding from TCs, such as Idai and Kenneth in
Mozambique in 2019 (Emerton et al., 2020). Flood extent
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maps can also be useful for rapid flood mapping during
and following flood events, when humanitarian actors
are required to make quick decisions based on knowledge
of the areas most at risk.

6.2 | Impact, exposure and risk
assessment

A key aspect of improving the application of forecasts
across multiple sectors is the move towards impact-based
forecasting and provision of risk information, which can
assist decision-making by providing valuable context
(e.g., number of people at risk or key infrastructure that
may be vulnerable including hospitals, access roads,
energy infrastructure). An example is the development of
flash flood impact forecasts presented by Baugh and
Hansford et al. [CB-P; EH-P]. Since flash flood hazard
forecasts could highlight a wide area to be at risk of
flooding, this work intersects flash flood hazard forecasts
with exposure information [EH-P] to produce a risk
matrix [CB-P]. A map is provided, colour coded accord-
ing to the risk matrix, highlighting areas where the great-
est impacts might be expected (Figure 8). To ensure
applicability, the project engages regularly with forecast
users on effective design and dissemination [CB-P]
(Section 3.2), which also allowed identification of the
most important exposure data to consider [EH-P]. Addi-
tionally, Teklesadik et al. [AT-P] combine GloFAS fore-
casts and flood reports with socio-economic vulnerability
and population density data, demonstrating the ability of
a global forecasting system to detect flood signals and
activate local early action protocols.

While many studies have evaluated differences
among global flood models, little research has been done
to look at differences in the way population exposure is
considered in the models. Hoch et al. [JH-P], combined
flood maps with WorldPOP (www.worldpop.org) data on
the delta of the Ganges-Brahmaputra river system. It was
found that estimates of the number of people affected by
flooding differ remarkably depending on the model
applied. This was also highlighted by Bernhofen
et al. (2022; [MB1-P]), who showed that global datasets
can vary significantly at national levels, and the choice of
model has a larger impact on population exposure esti-
mates than the choice of the gridded population dataset.
They advocate that further work is needed to incorporate
locally sourced data and locally calibrated models to test
global datasets, and to evaluate which data are most suit-
able for local use. This highlights a challenge of using
global information for local decision-making, and the
importance of model choice (Section 5).
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Schematic of the procedure for generating flash flood impact forecasts from flood hazard forecasts, exposure information
and a risk matrix, as part of the TAMIR project (adapted from Baugh et al. [CB-P], Hansford et al. [EH-P]).
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6.3 | Flood forecasting in challenging
environments

Several presentations applied global and local data and
models for flood forecasting in challenging environments,
such as those with complex physiography, climatic condi-
tions or human impact, for example, urban areas or
fast-responding mountainous catchments. In such catch-
ments, radar data is often applied for short-term forecast-
ing. Imhoff et al. [RI-P], for instance, used Commercial
Microwave Links (CMLs) as an alternative data source
for nowcasting. The methods were tested in the
Netherlands and it was found that, while radar is better
for low rainfall intensities, CML data provided better esti-
mates for more intense rainfall, with the advantage that
CML could be used in fast-responding and urban catch-
ments worldwide (Imhoff et al., 2020).

In Israel, a new forecasting system based on the GEO-
GloWS streamflow service (GESS; ECMWF, 2020a,
2020b) is being used to predict urban flooding [AG-P]. In
Tel Aviv, flooding can occur due to a combination of
heavy rainfall, poor drainage, and high water levels in
the city's two rivers. Givati et al. [AG-P] used GESS data
to compute thresholds for different parts of the city. The
approach has been applied successfully in several cities
and is used by the Isreali Fire and Rescue Authority and
Tel Aviv municipality drainage department, alongside
local forecasts, for proactive decision-making. The
Madeira Crisis Room [MdM-P] also uses global flood
forecasts for decision-making in urban areas, bringing
together a range of institutions and uses research with
GIoFAS to show the importance of a hydrological fore-
casting system alongside local data for contingency
planning.

Another example is the work of ICIMOD (the Inter-
national Centre for Integrated Mountain Development)
in developing flood forecasts for the Chenab basin in
Pakistan [PD1-P]. The Chenab is a transboundary tribu-
tary of the Indus in a mountainous area vulnerable to
flooding and landslides, and with limited local data; it is,
therefore, challenging to develop a well-calibrated model
tuned to local information. As discussed in Section 4,
Dangol et al. [PD1-P] used post-processing of satellite
data for assimilation and calibration, exploring the poten-
tial of satellite rainfall data for flood prediction in trans-
boundary and data sparse regions.

6.4 | Flood and drought monitoring

Several examples of recent developments using satellite
data for flood monitoring were discussed during the
workshop, highlighting different approaches. The
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Dartmouth Flood Observatory (Dartmouth Flood Obser-
vatory (DFO), n.d.) provides a range of publicly available
maps, data, and information on ongoing and past flood
events (see also Section 4.1). A variety of satellite data
can be used to estimate flood extent and river flow, and
Kettner et al. [AK-P] demonstrated the use of these data
to produce flood extent maps for specific locations. These
methodologies can be used worldwide, including in
regions with a lack of observations or data sharing.

A different approach, implemented by the CEMS
GFM products within GloFAS (CEMS, 2021), uses three
flood mapping algorithms in parallel, alongside an
ensemble algorithm, to create near-real-time maps of
flood extent, including maps representing the uncertainty
[RH-P]. This approach can also be used regardless of
cloud cover or lack of daylight. The work of Mason et al.
[DM1-P], also mentioned in Section 4.1, showcases the
potential for use of global data for local applications, as
their development of a state-of-the-art flood detection
method uses data that are readily available worldwide to
detect flooding in urban areas, addressing the issue that
many remote sensing services are aimed at mapping rural
floods due to complicated backscattering mechanisms in
urban areas.

Two drought monitoring systems were also presented.
The Western Land Data Assimilation System (WLDAS;
Erlingis et al., 2021) aims to provide daily estimates of
groundwater recharge, soil moisture, snow water equiva-
lent and ET, for applications such as groundwater sus-
tainability and agricultural decision-making in the
western USA [JE-P]. An extension of the German
Drought Monitor (UFZ, n.d.) was also developed to com-
bine near-real-time observations with extended-range
forecasts [HN-P]. This new hydroclimatic forecasting sys-
tem (HS2S) provides soil moisture forecasts out to
3 weeks and is used for real-time drought monitoring
and planning, and in impact assessments for agriculture
and energy sectors (UFZ MOSES, n.d.).

6.5 | Modelling and forecasting for
water-relevant sectors

An important application of hydrological forecasting is
energy and water resource management. Several exam-
ples were presented at the workshop, using forecasts on a
range of time scales. A coupled rainfall-runoff and elec-
tric system simulation approach for Uruguay's largest
hydroelectric reservoir was developed to provide daily
forecasts out to 7 days ahead [ADV-P]. In Turkey, a
multi-model approach is being developed for the upper
Euphrates basin, where streamflow forecasting is impor-
tant for reservoir operations due to high upstream snow
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potential [GU-P]. Ensemble forecasting methods are uti-
lised to represent the uncertainty and extend the lead
time, while two hydrological models with different snow
routines are used to reduce the uncertainty. A further
example was presented for the Compagnie National du
Rhone in France [LC-P], where two hydrological fore-
casting tools have been developed; an hourly determinis-
tic forecast with a 4-day horizon, and a daily probabilistic
forecast with a 14-day horizon. Discussions focussed
around working towards coherence between the different
tools. Implementing a seamless combined forecast helps
to avoid duplication of expertise, eases the work of fore-
casters and optimises operations for river flow
management.

For some applications, longer-range forecasts on the
scale of months or seasons are essential. For example, the
Requena-Utiel aquifer in Spain is used for vineyards and
olive and nut trees, and suffers from overexploitation. A
pumping cap is therefore set, based on the type of year
(dry/normal/wet). There is a need to predict the type of
year expected, to schedule pumping and crop production.
Macian-Sorribes et al. [HMS-P2] investigated the skill of
seasonal meteorological forecasts in anticipating the type
of year. Similarly, several water management agencies in
the Murray Darling basin (Australia) use seasonal fore-
casts for water demand forecasting [KH-P; QJW-P]. In
Brazil, medium-range to seasonal forecasts are used oper-
ationally for the Brazilian National Interconnected Sys-
tem with more than 150 hydropower plants and
reservoirs [FF-P2]. Water users in the Greater Mekong
region utilise short and long-term streamflow, sediment
and reservoir inflow forecasts [DDB-P]. Another example
is the transboundary Yacyretd Hydropower Facility on
the Parana River, between Argentina and Paraguay.
Working with the facility, Rodriguez et al. [ACER-P]
identified that the main needs for seasonal forecasts are
in energy generation planning and maintenance schedul-
ing, with lead times up to 15 months required.

6.6 | Climate trends and adaptation

While most applications focussed on short-range to sea-
sonal timescales, Busker et al. (2021; [TB-P]) presented a
work that combines forecast and climate adaptation time-
scales. Green and blue infrastructure can decrease urban
flood risk by increasing storage capacity (e.g., green roofs,
permeable pavements, canals, floodplains). The work
presented explores the use of blue-green roofs, where
plant and water storage layers are combined, and the
application of weather forecasts to trigger release of water
from the blue layer ahead of extreme rainfall, or to retain
water when a dry period is forecast. Such applications
can be effective for urban climate adaptations to extreme
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precipitation and heat events (Busker et al., 2021). Kelder
et al. (2020; [TK-P]) highlighted that relatively short pre-
cipitation records may not allow for robust detection of
short-term (decades, rather than centuries) trends in cli-
mate extremes. They applied novel techniques pooling
ensemble members of seasonal forecasts to increase the
historical record and study decadal changes in precipita-
tion extremes. Further, Kelder, Wanders, et al. (2022)
also evaluated the feasibility of simulated climate
extremes outside observed variability. They propose a
workflow to study rare weather events using the C3S sea-
sonal predictions (Kelder, Marjoribanks, et al., 2022). An
example in Western Norway suggests a significant rise in
3-day precipitation extremes for Svalbard, ‘such that the
100-year event estimated in 1981 occurs with a return
period of around 40 years in 2015 (Kelder et al., 2020).

7 | DISCUSSION

This article has presented an outlook on current research
related to hydrological modelling and forecasting from
global to local scales. It provides a reflection on the key-
notes and poster presentations from the Joint Virtual
Workshop on ‘Connecting global to local hydrological
modelling and forecasting: challenges and scientific
advances’ from 29 June to 1 July 2021.

This section reflects on two points:

1. How effective was the digital format in representing a
broad view and bringing a global audience together?

2. Where is the field of global to local hydrological fore-
casting moving as a whole?

7.1 | Discussing hydrological science
with a virtual global audience

The number of contributions and participants set the
stage for a successful event on paper. However, true suc-
cess of a workshop is measured by engagement. Close to
60% of respondents to a follow-up survey of the event
rated the Gather.Town platform as ‘excellent’, with one
participant quoting it as the ‘best online experience to
date!’. It is this overwhelmingly positive feedback that
shows that there is a future for virtual online workshops
if designed well. The workshop success can also be quan-
tified in terms of tangible post-workshop outputs. This
article is an example of such output, written collabora-
tively by an international group of young professionals
who met through this workshop. Additionally, this work-
shop allowed for hydro-meteorologists from all around
the world to meet and discuss the latest scientific
advances with no travel costs and related carbon-
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footprint, highlighting the viability and importance of
virtual workshops to discuss science in the future.
Analysis of the contributions to the workshop shows
how the study sites are spread over the globe, with
Europe overrepresented and Africa clearly still underrep-
resented (Figure 9a). Most contributors were from uni-
versities and research institutes (Figure 9f), indicating
that the outreach into the operational domain could be
extended. The main application domain was floods
(Figure 9d), showing that hydrological research is still
disproportionately leaning towards forecasting floods,
which may lead to increased drought vulnerability
(Bressers et al., 2016), thus, demanding a conscious shift
towards integrated flood and drought management. All
different time scales of forecasting were strongly repre-
sented except for climate scales (Figure 9e). However,
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climate projections (forecasts on the climate scale) are
not typically considered part of the operational forecast-
ing time scales and therefore researchers may have been
dissuaded from presenting by the workshop title. Last, it
is notable that regional forecasting applications are still
rare and most applications cover the basin scale
(Figure 9b).

While the free-to-participate digital format lowers
barriers to attendance and offers the inclusion of a much
wider audience, some new barriers to communication are
introduced (Shoshan & Wehrt, 2021). Our experience
shows that these can be minimised through:

« Encouraging spontaneous meetings and the meeting of
new people through platform design and by setting up
dedicated activities. Here, the Gather.Town space was
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FIGURE 9 In-depth assessment of the research presented at the Workshop. (a) Distribution of study locations (location of study sites in
the research presented); (b) Distribution of spatial scales by continent (Basin level: Studies conducted for each basin, Regional: Selection of
basins within a country or a continent, National: for entire countries, Continental: for entire continents; (c) Type of study (Development of
new system/method/model: Presents or explains a new forecasting system, correction method, or hydrological model, Evaluating and
benchmarking: Evaluates the performance or relative value addition of a new system/database/model/technique, Comparing and
combining: Combines systems, databases, techniques to improve forecasting performance, Others: studies that do not fit into these
categories); (d) Application status in terms of operationalizability (Research: System/method developed without aiming for operational
applications, Developmental: System development currently in progress, Pilot: Testing of fully developed systems in operational settings,
Operational: System/technique/method operationally implemented); (e) Temporal scale; (f) The presenters' professional sector
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designed to be a replica of the ECMWF headquarters
located in Reading, UK, offering a sense of place to
attendees. The activities included splinter meetings,
art, walk-in demos and poster sessions, all of which
could be accessed ad-1ib and spontaneously.

« Creating entry points to existing networks, and pro-
moting the creation of follow-up initiatives, such as
EC-HEPEX for early careers.

« Ensuring that the technological barrier is as small as
possible (e.g., stable internet connection and a web
browser).

« Moderating the sessions for an efficient management
of time during the presentations and an easy-to-follow
format for the presentation of the content
(e.g., proposing templates for slides or guidance for
posters).

« Minimising the mental strain for attendants that
comes with organising which link to click or where to
follow up.

+ Organising the workshop over a limited number of
days (here 3 days) to limit ‘Zoom fatigue’ (Shoshan &
Wehrt, 2021).

« Catering to different time zones, with morning and
afternoon sessions to increase inclusiveness, making
available recordings of presentations and offering sev-
eral opportunities to meet the authors.

+ Thinking about the follow-up: which is easier than
ever before through the same set of virtual communi-
cation tools (e.g., Slack).

+ Keeping attendance free of or with low costs.

Some further improvements were suggested by partic-
ipants, including:

« The right to be forgotten: be clear on which informa-
tion will be retained online forever, and to whom and
why. There is a tendency in online events to record
every session and publish online every contribution.
This can raise barriers in openly discussing work that
is often still work-in-progress.

+ More dedicated emphasis on activities that generate
new connections: possibly the success of this workshop
owed to the pre-existing networks of attendees, but
equally important is to offer room for new networks to
be created, bringing new perspectives and topics to the
community.

7.2 | Outlook on global to local
hydrological modelling and forecasting
research

There is a strong desire among the scientific community
to contribute to current societal challenges associated
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with disaster risk reduction, climate change adaptation
and changing societal needs. From discussions at the
workshop about fit-for-purpose modelling, co-production,
local applications and decision making, there seems to
be a consensus that the added value of global to local
forecasting research is in developing stronger inter-
connections between research institutes, forecast pro-
viders and local users. We expect that in the next decade,
the portion of research that is directly related to this chal-
lenge will increase. This will make forecasting research
more multidisciplinary as the research focus shifts from
building new technical tools and techniques towards how
those techniques, tools and products interact with the
people who use them. Communities such as HEPEX and
GFP are volunteer-based and non-funded, but have
proved to be excellent places for networking and
exchanging scientific ideas in combination with opera-
tional practices.

The importance of hydrology to solve societal chal-
lenges, and especially the integration of scientific endeav-
ours into operational practice, was recently made clear in
the recent efforts on hydrology by the WMO (WMO,
World Meteorological Organisation, 2021). In October
2021, the WMO Extraordinary Congress adopted the
WMO Water Declaration, which, among others,
acknowledges the central role of the water cycle and
hydrology in the water-climate-weather continuum and
in the five long-term goals of the WMO Strategic Plan
(2020-2023); it also endorsed the Water and Climate Coa-
lition which, following also the recommendations of the
2021 WMO State of Climate Services: Water report, aims
to provide tangible action, activities and policy support
for an integrated water and climate agenda, and to accel-
erate the implementation of the water-related United
Nations Sustainable Development Goals (SDGs). Last, it
approved the WMO Vision and Strategy for Hydrology
and its associated Action Plan, which target eight long-
term ambitions for operational hydrology in support of
the global water agenda: (1) No one is surprised by a
flood, (2) Everyone is prepared for drought, (3) Hydro-
climate and meteorological data support the food security
agenda, (4) High-quality data supports science, (5) Science
provides a sound basis for operational hydrology, (6) We
have a thorough knowledge of the water resources of our
world, (7) Sustainable development is supported by
hydrological information, and (8) Water quality is
known. Note that this action plan highlights societal
needs that are directly related to operational hydrological
forecasting and points out to the importance of the
science-to-operations interface.

A key aspect of forecasting is communicating and
ensuring understanding of the forecast and warning
information (Budimir et al., 2020). A crucial part of this
is understanding and communicating forecast
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uncertainty (Créton-Cazanave & Lutoff, 2013; Fundel
et al.,, 2019; Pappenberger et al., 2013). There are well-
established research paths such as forecast verification,
benchmarking and pre- and post-processing tools, all of
which are being explored simultaneously by the commu-
nity. The greatest challenge that remains to operationalis-
ing the recently developed tools is that of uncertainty
communication. Again this cannot be achieved by tech-
nological advancement alone, but through engagement
with the end-user through system co-design and the use
of creative methods (e.g., serious games, art).

Technical and scientific advances are enabling the
development of global hydrological forecasting systems.
New data (EO, citizen science, and CML) and data assim-
ilation methods enable the continued push to create
high-resolution forecasts relevant for a wide range of
local users. It is now that the first systems are truly opera-
tional that the question arises: Who can make use of these
systems? To what extent can our still limited forecasts sup-
port decision-making now? Do better forecasts necessarily
lead to better decisions? Despite great advances, we still
have difficulty in predicting extreme events. We argue
that ‘waiting for forecasts to be perfect’ does not guaran-
tee their use by decision-makers (Ramos et al., 2013) and
that connections need to be made now between global
systems and local users (see Becker et al., 2015).

Co-production and the incorporation of local knowl-
edge have been identified as a research track that is cru-
cial to study how global forecasting systems can be
incorporated into local decision making, and how large-
scale systems and data can better use local knowledge
and experiences (see Arnal et al., 2020). Part of this pro-
cess is to identify the ‘user’. ‘Local users’ are a diverse
group: Are we talking about single farmers, or are we talk-
ing about national hydrometeorological services? There is
currently limited scope for users (sometimes including
national hydrological services) to provide feedback and
inform scientific developments of global forecasting sys-
tems. There is a need to:

« consider how national capacity can be supported with
internationally developed forecasting systems (interim
solutions, longer lead times and support ahead of
major disasters);

+ explore a seamless integration of local short-term and
global longer-term forecasts;

+ build community ownership of global forecasts;

+ learn from and incorporate local knowledge and expe-
riences in the development of large-scale forecasting
systems.

The core engine of hydrological forecasting systems
remains the hydrological model(s). The established
research paths range from ‘classic’ single process-based
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or conceptual models and their calibration, to hybrid
methods that combine data-driven methods (ML) to solve
shortcomings of these classic models, and also multi-
model approaches that capture model uncertainties. This
large range of research pathways requires cooperation
and FAIR (Findable, Accessible, Interoperable, Reusable)
data/models exchange (Hutton et al., 2016; Wilkinson
et al., 2016) between hydrological modelling groups,
large-scale forecast providers and local forecasting agen-
cies, who have to work closely together to build ensem-
bles of multi-model forecasts. Breaking outside of the
boundaries of hydrology, ESMs are a way forward not
just in hydrology, but in many fields that would benefit
from coupled ESMs that are born from collaborative
efforts, and from the move towards less of a split between
meteorology and hydrology.

The range of applications presented in the workshop
and reported in this article showed how the current gen-
eration of hydrological forecasting systems is utilised.
Forecasting only hydro-meteorological variables is not
enough; the move towards impact-based and action-
based forecasting (see Merz et al., 2020), complementing
forecasts with impact estimates such as expected damage
and human consequences, is essential (Merz et al., 2021).
Hydrological forecasting becomes intertwined with water
and energy management, humanitarian action and cli-
mate adaptation. A concern in the application of large-
scale forecasting systems is the sustainability of training
programs. What happens when a one-off funded project
gets discontinued? Continuous connections are important
for creating meaningful partnerships with local commu-
nities, as well as with local providers and purveyors of
forecast services. A balance between continuing support
and new initiatives is needed.

The common theme in all these developments is that
the field of hydrological modelling and forecasting is
becoming increasingly multidisciplinary. Many disci-
plines are increasingly collaborating as we move towards
user-centred and/or Earth System modelling approaches
(e.g., Irrgang et al., 2021). In the next decade, the core
work of creating new methods and new products needs
to be equally balanced by multidisciplinary studies. This
includes fostering connections with social sciences to co-
create and bring developed tools to practice and closer to
users (Hall, 2019), as well as to optimise the positive
impact that we as a hydrological forecasting community
have on society (Lavers et al., 2020; Wesselink
et al., 2017).

8 | CONCLUSIONS

This article reviewed and synthesised the contributions of
the global hydrological prediction community to the Joint
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Virtual Workshop on ‘Connecting global to local hydro- IV. Data, data, everywhere: The concurrent rise of

logical modelling and forecasting: challenges and scien-
tific advances’. Examining the diverse contributions
through the lens of Early Career researchers, yielded the
following conclusions which are conceptualised along-
side the Workshop themes in Figure 10:

I. Operationalising the Science: The hydrological com-
munity is working actively to operationalise the

Earth Observation, big data processing architec-
tures, data assimilation, and deep learning, provide
an opportunity to improve current prediction sys-
tems as well as investigate scale-relevant hydrologi-
cal behaviours. Incorporating domain expertise
and making training data/models available to the
community by following the FAIR principles could
accelerate the pace of advances in the field.

science behind cutting-edge forecasts, well-aligned V. Beyond hydrological forecasts: Minimising damage

with the long-term goals of the WMO Strategic
Plan (2020-2023), to improve global resilience
towards water extremes.

I1. (Forecast) Communication is Key: Helping decision-
makers and end-users interpret forecasts is key in
preventing impacts of hydrometeorological disas-

ters, which requires creative solutions such as seri- VI

ous games or art to better engage users and
effectively communicate forecast uncertainty.

IIL. Users as the First Mile: Co-production and co-
designing forecasting systems with diverse local
user groups is necessary to ensure that the forecasts
will be used as intended, and will be useful to those
relying on these for a variety of applications.

from water extremes requires an understanding of
expected socioeconomic impacts through impact
forecasting, since damage depends only partially
on hydrometeorological processes and hazards,
and are strongly controlled by societal vulnerability
to climate extremes.

Timing is everything: Anticipatory action triggered
based on impact forecasts is the way forward to
effectively mitigate disaster risk, bridge the gap
between forecasting science and adaptation, and
improve the cost-effectiveness of humanitarian aid.
Yet, subjectivity remains in choosing the scale and
skill of models used for such applications, as well as
the integration of local knowledge and dissemination
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systems. Further research on adapting global fore-
casting services for local-scale anticipatory action is
necessary under the current scenario of worsening
climate disasters.

VII. Unified earth system modelling: As compound
disasters become the new normal in a changing cli-
mate, understanding their co-occurrence and pre-
dicting their unified impacts will be crucial to
prepare for the unexpected extremes in the future.
There is thus an urgent need for interdisciplinary
collaboration and unification of modelling systems,
in order to enable forecasting and societal pre-
paredness for such compound and often unex-
pected events.

We expect that the new digital collaboration possibili-
ties highlighted by the necessity of these during a global
pandemic, as well as the rapidly changing landscape of
big data computing will enable reaching these goals rap-
idly in the near future, leading to more skilful and useful
hydrological predictions for everyone worldwide.
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TABLE A2
those types of uncertainty.

Type of uncertainty

Aleatory

Epistemic (system
dynamics)

Epistemic (forcing and
response data)

Epistemic (disinformation)

Semantic/ linguistic

Ontological

Description

Uncertainty with stationary statistical
characteristics. It may be structured
(bias, autocorrelation, long-term
persistence), but can be reduced to a
stationary random distribution

Uncertainty arising from a lack of
knowledge about how to represent
the catchment system in terms of
both model structure and
parameters

Uncertainty arising from lack of
knowledge about the forcing data or
the response data with which model
outputs can be evaluated. This may
be because of proportionality or
interpolation issues when not
enough information is provided by
the observational techniques to
adequately describe variables
required in the modelling process

Uncertainties in either system
representation or forcing data that
are known to be inconsistent or
wrong.

Uncertainty about what statements or
quantities in the relevant domain
actually mean depending on the
contexts or scale (e.g., storm runoff,
baseflow, hydraulic conductivity,
stationarity, etc.)

Uncertainty associated with different
belief systems, including what are
considered the appropriate
assumptions

DASGUPTA ET AL.

Models

Single model
Single model + PP
Multi-model

Single model

Single model +
PP/+ML

Multi-model

Single model
Single model + PP
Multi-model

Single model
Single model + PP
Multi-model

Classification of different types of uncertainty (based on Beven (2016), and workshop contributions that specifically address

Workshop contributions

DM3-P

TS-P, FF-P2
PD-P, TJ-P, DC-P, HT-P, CPH-P,

BN-P, LS-P, GU-P, LC-P (deterministic
+ probabilistic), JO-P, AW-P, PZ-P
(deterministic w/PP + probabilistic),
FW-P, LA-P, FJ-P, GM-P

TS-P, FF-P2,
PD-P, TJ-P, DC-P, DH-P,

BN-P, GU-P, JO-P, LN-P, FW-P, LA-P,
GM-P

TS-P,
HT-P,
JO-P

HT-P
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