

The relevance of coupled climate model WRF-CTSM for land-atmosphere interactions analysis

JiO **University of Oslo**

Iris Mužić^{1,2}, Øivind Hodnebrog¹, Terje K. Berntsen², Yeliz Yılmaz², Jana Sillmann^{1,3}, David Lawrence⁴, Sean Swenson⁴, Negin Sobhani⁴

. MOTIVATION

The uncertainty of:

- the water and energy budget at high latitudes in a changing climate
- the climate model representation of spatial variability in land-atmosphere fluxes

2. KEY OBJECTIVES

- To provide a systematic evaluation of the performance of a recently developed WRF-CTSM coupled climate model (Weather Research and Forecasting model, WRF, and Community Terrestrial Systems Model, CTSM) in simulating the interannual variability and spatial patterns of hydroclimatic variables in a high-latitude region
- To investigate the added value of using the state-of-the-art **WRF-CTSM Hillslope Hydrology model configuration** for the assessment of the combined effect of topography and hydrological fluxes in modulating the land surface conditions

3. MODEL SETUP

Selected WRF-specific options / schemes

RA5	
RTMG (4)	
/YNN2 (5)	
GF (3)	
VSM6 (6)	
not applied at the PBL	

The 2 model configurations

2010 - 2022

Domain extent

• 10.5 km resolution

8 years long spin-up period (2002 - 2009)WRF-CTSM Hillslope Hydrology run

Default WRF-CTSM run

2018 16 years long spin-up period

(2002 - 2015 from the default WRF-CTSM run and 2016 – 2017 from the WRF-CTSM Hillslope Hydrology run

4. EVALUATION DATASETS

- The openly available **station-based datasets** from the Norwegian, Swedish and Finnish meteorological and hydrological institutes and gridded observational datasets on different spatial resolutions
- Daily aggregates (2010 2022)

Overview of the observational datasets				
2 m air temperature	Meteorological stations (METNO, SMHI, FMI)	E-OBS (0.1°)	NGCD (1 km)	
Soil moisture	Hydrological stations (NVE, FMI, GTK) Soil depth 10 cm	ESA CCI SM (0.25°) Soil depth layer approx. 0-5 cm	GLEAM (0.25°) Soil depth layer 0-10 cm	
Snow depth	Meteorological stations (METNO, SMHI, FMI)			
Snow water equivalent	Hydrological stations (NVE, SMHI, SYKE)			

¹CICERO Center for International Climate Research, Oslo, Norway ²Department of Geosciences, University of Oslo, Norway ³University of Hamburg, Germany

