EGU23-11372

The First Network of Ocean Bottom Seismometers in the Red Sea to Investigate the Zabargad Fracture Zone* Laura Parisi¹, Nico Augustin², P. Martin Mai¹, Sigurjón Jónsson¹

Figure 1. Study area and overview of the deployment. ZFZ: Zabargad Fracture Zone. DSF: Dead Sea Fault.

MOTIVATIONS The Red Sea is an ideal natural laboratory to study the transition from continental rifting to seafloor spreading and the formation of transform faults because it is one of the youngest ocean rift basins on Earth. The Zabargad Fracture Zone is located in the Northern Red Sea and significantly offsets the rift axis to the East. Thus, it is considered a key tectonic element to understanding the evolution of the Red Sea rift (Figure 1). Here we present the first passive seismic network in the Red Sea deployed within the Zabargad Fracture Zone (Figure 1-2-4) to study its faults system and lithospheric Earth structure.

FINDINGS

- Current-generated vortices could make the individual elements of the OBSs resonate at a frequency larger than 8-10 Hz (e.g., Essing et al., GJI, 2021; Corela et al., NHESD, 2022; Stahler et al., SRL, 2018; OBS02 and OBS07 of Figure 5).
- Even OBSs that only include a sensor placed on a small frame with no additional elements can produce high-frequency (up to 40 Hz) noise modulated (SOUTH, Figure 5).
- The comparison of the noise levels between stations deployed at sea, on islands, and on land highlighted that noise at frequencies between 1 and 8-10 Hz is not due to resonance of the OBSs elements (figures 7-8).
- Site effects seen on local earthquake waveforms may reveal important information on the sedimentary coverage (Figure 9).

CONCLUSIONS Our analyses suggest that the ZAFRAN dataset has an overall good quality and is promising in answering our research questions on the Red Sea (Figures 3 to 9).

Figure 2. Timeline of the data availability from September 2021 to January 2023. White: unavailable. Green: 3-C available verticalcomponent. Yellow: available but in need of pre-preprocessing. Red: sensor failure.

	QUMAN	Island		LIF FIR	is inter	in bet	17			
110 100	BREEM	Island	i midan		to Lpass	n de bed b				
	OBS12	-		e it ? De tweeter	Re (-Bibidi		er 1.7400			
	NORTH		is de	é (be factor			,			
	OBS11	-	1	e de 2 des desembles	Nor de Billion de la com		er 1.400		(*************************************	
	DBS10			a di dina Manana	for A Statist		art Ma	1	na a stalla anno da a da da	
) 60SBC			t de trate	tie t. Disk lints	in des Breit fis				
	DBS08			1			-			
	DBS07 (tin f Status	in (it Dalt fi		-	n cem arrealman	
	BS04 (,		te e brown				n and force of a set	
	DBS05 C	-	-	n de la finalis	to a distant		an 1 100	i i i		
	DBS06 (-							-	
)BS02 (n de la comunicación	te A Britant			11		
6	OUTH C		,	1	1		m.			
	BSO3 S		,	n a 2 th Athanto	No. C Bistonia		in 1 - 100		Bare Pregrad	
	DBS01 C			179- 1 111	-		ryg	-	witt grieben	
	LAVA (Land	,	1	1		irre .			
ļ		Land	1	1	1		1718	1	ninder einen fenne	
	0.015	ov ²² ot	, pec	12 1an 2	, repl	2 Nar	22	6,	22 Nay 22 IUN	
1		-150 -130 -110 Amplitude [dB]								

Figure 3. Z-component spectrograms for the entire deployment time. Stations are ordered from South (bottom) to North (top). Where not specified, spectrograms are from OBSs. The red (green) box picks the teleseismic (local) earthquakes in Figure 6 (9).

¹ King Abdullah University of Science and Technology, Saudi Arabia ²GEOMAR, Germany

Figure 4. Left: DEPAS OBS on board the RV Thuwal just after recovery. Centre: Fugro deep-lander connected to seismometer on the seafloor. Right: Direct burial of the land/island station seismometer.

Figure 6. Lowpass filtered (T>1s) waveforms of two M_w6.7 teleseismic earthquakes occurred on 22 March 2022, about one hour after the other. Earthquakes are recorded at roughly the same epicentral distance of 73° distance and azimuths of 292° (first) 67° (second).

proximity of OBS01 and OBS02.

^{*} A manuscript with the same title and the following author list will be submitted soon to Seismica for publication

L. Parisi, N. Augustin, D. Trippanera, H. Kirk, A. Dannowski, R., R. Matrau, M. Fittipaldi, A. Nobile, O. Zielke, E. Valero Cano, G. Hoogewerf, T. Aspiotis, S. Manzo-Vega, A. Espindola Carmona, A. Barreto, M. Juchem, C. Suhendi, M. Schmidt-Aursch, P.M. Mai, S. Jónsson.