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Weather and Climate Risks

In a first step we set up a statistical wildfire hazard model. Then,
we build upon the open-source climate risk assessment platform
CLIMADA (Aznar-Siguan and Bresch, 2019) to compute socio-
economic impacts as the combination of the newly developed
hazard, an exposure and its vulnerability (Fig 1).

Wildfires cause extensive damage to physical assets exposed to
them. So far, assessing the risk of these events remains an
understudied area of global disaster risk assessment (Ward et
al., 2020). Probabilistic risk estimates covering the range and
likelihood of devastating events are crucial for various
applications such as prioritizing adaptation measures and
determining insurance pricing. In parallel, increasingly available
data allows for the use of machine learning techniques to predict
wildfire behaviour (Koh, 2023). In this context, a globally
consistent, open-source wildfire risk model facilitates the
accessibility of such analysis to stakeholder from both the public
and private sector.

Impacts are computed by combining a hazard, exposure and
vulnerability. The vulnerability describes the historic relationship
between wildfires and caused impacts. It is derived by
combining historic hazard intensities, an exposure and damage
records. Lüthi et al. (2021) deduct the vulnerability for MODIS
hotspots. In this study, we transfer this approach using MODIS
burnt area as hazard intensity. The used exposure layer LitPop
globally consistently disaggregates asset value data proportional
to a combination of nightlight intensity and geographical
population data (Eberenz et al., 2020). The damage records are
extracted from the International Disaster Database EM-DAT
(Guha-Sapir et al., 2021). The derived vulnerability can then be
used to compute both historic and probabilistic impacts and
thereon deduct common risk metrices such as impact return
period curves and the average annual impact.

We set up a country-specific wildfire model predicting the daily
fraction of burnt area (0-1) per grid cell (4x4 km) based on
covariates derived from open-source data.

Response: MODIS burnt area

Covariates
§Land use fractions – based on Copernicus Global Land Service
Land Cover (Buchhorn et al, 2019)
§Gridded population (Center for International Earth Science
Information Network - CIESIN, 2018)
§Daily and monthly maximum vapor pressure deficit – based on
ERA5 (Hersbach et al., 2023)

Feature Engineering
§Implicit propagation: Fraction of MODIS burnt area in
neighbouring cells in preceding time steps

§Fragmentation: Average number of neighbouring cells sharing
the same land use type – based on land cover maps with a
resolution of 100m (Buchhorn et al, 2019)

Method
We make use of a machine learning model based on the
efficient regression tree boosting system XGBoost, which also
gives a measure of importance of each covariate (Koh, 2023).

Method overview

II. Socio-economic impact and risk assessmentI. Statistical wildfire hazard model
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Motivation

Fig. 1 The three components hazard, exposure and vulnerability as used in CLIMADA to compute wildfire risks
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