

MODELLING HORIZONTAL PROPAGATION OF OROGRAPHIC GWS IN EMAC

From a source model to propagation pattern

April 24, 2023 | Rhode, S., Eichinger, R., Preusse, P., Garny, H., Ern, M., and Krasauskas, L. | EGU 2023 - Vienna

Member of the Helmholtz Association

Redistributing oro. GWMF using pre calculated propagation pattern

Orographic Source and Propagation Modelling

Rhode et.al., 2023, A mountain ridge model for quantifying oblique mountain wave propagation and distribution

Calculation of a statistic propagation pattern

 \rightarrow transport of GWMF from source grid cell

General redistribution pattern

 \rightarrow GWMF redistribution from land to ocean

Slide 3

Emulating hor. GW propagation in EMAC (zonal mean drag)

Eichinger et.al., 2023, Emulating lateral gravity wave propagation in a global chemistry-climate model (EMAC v2.55.2) through horizontal flux redistribution

Estimating oro. GW propagation from a Mountain Wave Model

3. MW Source Model

2. Schematic Approach

4. Transport pattern μ

Source Finding Algorithm - Preparing steps

Source Finding Algorithm - Hough Transformation

The idealized mountain ridges lie along the ridge lines

 \Rightarrow Hough transformation allows to detect (more-or-less) straight line features

Source Finding Algorithm - Hough Transformation

The idealized mountain ridges lie along the ridge lines

 \Rightarrow Hough transformation allows to detect (more-or-less) straight line features

 \Rightarrow location, orientation and length of possible mountain ridges

Source Finding Algorithm - Fit of idealized ridges

Final step is a fit with Gaussian shaped mountain along the length of the detected

4. Fit with 1D Gauss-shaped ridges

Elevation approximation of different scales

April 24, 2023

Slide 0

GW parameter estimation

Idealized Ridges with shape:

$$h(x) = H_{\max} \exp\left(-\frac{x^2}{2\sigma^2}\right)$$

Excited MWs can be calculated via FT

$$\Leftrightarrow \lambda_0 = \frac{2\pi}{k_0} = 2\pi\sigma \tag{1}$$

Mountain Wave Model

Temperature perturbation - 22.09.2019 00:00

Horizontal GWMF Distribution - July 2006

25 km

20 km

16 km

Member of the Helmholtz Association

Combination of hor. GWMF distributions and ray-traces

 \Rightarrow Information where each contribution to the horizontal distribution originates

Generating Redistribution/Transport Functions

For each GW:

- target location X_{tar} as location at specific altitude
- weight by the rays GWMF
- here chosen at H_{tar}
 - \Rightarrow redistribution of given GWMF from

 $X_{\rm src} \to X_{\rm tar}$

 \sim total GWMF transported from X_{
m src} to X_{
m tar} $\hat{\mu}(X_{
m src},X_{
m tar})$

Example of a transport function

- Transport matrix for each source grid point
- In general, GW flux will be reduced over land and increased over the ocean

Performance Estimation of propagation approximation

July Case - Drag Approximation

 $\begin{array}{l} \mbox{Monthly mean relative error to reference run} \\ \rightarrow \frac{\overline{|\mathrm{drag} \ \cdot \ \mathbf{ref}|}}{\overline{\mathbf{ref}}} \mbox{ as measure for approximation quality} \\ (global and monthly mean) \end{array}$

GW Drag typically increases with height \rightarrow especially higher level need to be approximated well

Deviation reduces by about a factor of 2 in the upper middle-atmosphere

Trade-off in H_{tar}

July Case - Drag Approximation

Monthly mean relative error to reference run $\rightarrow \frac{\overline{|\text{drag} - \mathbf{ref}|}}{\overline{\mathbf{ref}}} \text{ as measure for approximation quality}$ (global and monthly mean)

GW Drag typically increases with height \rightarrow especially higher level need to be approximated well

Deviation reduces by about a factor of 2 in the upper middle-atmosphere

Trade-off in H_{tar}

 \Rightarrow Improvement is proportional to shaded area

July Case - Improvement

 \Rightarrow H_{tar} \sim 40 km approximates up to 45% of drag transport

Seasonal Patterns - is propagation that seasonal?

More Rays, more fun!

Propagation pattern for full year of ray-tracing (about 2.5M rays).

 \Rightarrow is there a general-ish propagation pattern that can be used throughout the year?

Similar improvement to the monthly redistribution

About half the drag relocation is described in higher altitudes

Improvement throughout the year

Application in EMAC – GWMF

 \Rightarrow The redistributed GWMF is much closer to satellite observations

Further Reading

Pre-Print on the MWM:

(Rhode, 2023) April 24, 2023

Pre-Print on the implementation in EMAC:

