

1. Colatitude Information

In order to more accurately track the CH evolution and related high-speed streams, we apply weights to the latitudinal segments where the CHs are being detected (cf. Hofmeister et al., 2018). Milošic et al. (2023) showed that this approach can statistically improve the prediction of high-speed streams from CH areas.

STEREO+CH is an UNIGRAZ ESA H-ESC tool (see QR code) that is based on a persistence model (Temmer, Hinterreiter \& Reiss, 2018). The solar wind velocity is first measured insitu by STEREO-A and then shifted by the time it takes the Sun to rotate by the separation angle between STEREO-A and the Earth. As an uncertainty estimate, it tracks the evolution of the coronal holes from their appearances in EUV image data in STEREO-A to SDO. For this uncertainty estimate we present two upgrades:

The upgrades cause the amount ACE in-situ data within the uncertainty range of the model to increase from $\mathbf{2 5 . 1 \%}$ to $\mathbf{3 1 \%}$ (illustrated in Figure 6).

