Spatial downscaling of rainfall fields using a multiple-point geostatistics-based approach Wenyue Zou, Guanghui Hu, Pau Wiersma, Shuiqing Yin, Grégoire Mariethoz, Nadav Peleg Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland Contact: wenyue.zou@unil.ch

1. Motivation

- Downscaling is required to obtain high-resolution rainfall products for many hydrometeorological applications^[1]
- The multiple-point geostatistics model (MPS) has an advantage in downscaling the spatial structure of the rainfall field^[2]

2. The MPS model (https://wp.unil.ch/gaia/mps/qs/)

(c) K-sampling strategy

Rank	1	2	3	4	
Distance	0	75	104	241	
Pattern	В	A	D	с	

K = 1.5 Sampling probability : B-66.7% A-33.3%

References

[1] Abdollahipour et al., 2022. A review of downscaling methods of satellite-based precipitation estimates. Earth Sci. Inform. [2] Gravey, M., Mariethoz, G., 2020. QuickSampling v1.0: a robust and simplified pixel-based multiple-point simulation approach. Geosci. Model Dev. 13, 2611–2630.

5. Conclusion

The MPS-based downscaling method performs both the intensity and spatial structure of rainfall fields well The proposed downscaled approach can be applied to other regions and other precipitation datasets

Supplementary

0 Middel Low Middel High high

Case study : Beijing area

Leave-one-out cross-validation: spatial pattern maintenance

60 80 100 120(km)

Distance (h)

Reference CMPAS

Adjusted MPS downscaling

(a) Rain1

(b) Rain2

(c) Rain3

(d) Rain4

0

20 40

Experimental variogram

Among all samples, the variograms difference between reference CMPAS and adjusted MPS downscaling at an average distance, 20km and 80km, respectively.

Distance (h)	Average	20km	
ean of NRMSE	0.12	0.17	
MBIAS (%)	0.05	-0.04	

Downscaled storm of CMORPH

(b) 10am MAR = 5.20, CV= 1.61 99th = 40.42

MPS-based downscaling with adjustment

> (g) 13pm MAR = 11.92, CV = 1.15 99th = 63.63

(h) 13pm MAR = 12.43, CV = 1.19 99th = 69.99

MPS-based downscaling with adjustment

CMORPH

(d) 11am MAR = 6.34, CV = 1.50 99th = 46.05

(i) 14pm MAR = 8.95, CV = 1.32 99th = 54.99

(j) 14pm MAR = 9.35, CV = 1.36 99th = 60.49

(e) 12pm MAR = 11.28, CV = 1.08 99th = 56.11

(f) 12am MAR = 11.79 , CV= 1.1 99th = 61.72

(k) 15pm MAR = 6.70, CV = 1.47 99th = 46.30

(l) 15pm MAR = 6.70, CV = 1.52 99th = 50.93

Downscaled CMORPH: An example

Comparison between 8-km CMORPH, 1-km MPS downscaling and 1-km adjusted MPS downscaling rainfall by taking one hourly storm(on 12 pm 21st July 2012) as an example.

(a) CMORPH MAR = 11.28, CV=1.08 99th = 56.11

(c) MPS downscaling MAR = 11.41, CV=1.07 99th = 56.35

(e) Adjusted MPS downscaling MAR = 11.79, CV=1.10 99th = 61.72

(b) CMORPH zoom in

(d) MPS downscaling zoom in

(f) Adjusted MPS downscaling zoom in

Downscaled CMORPH: return periods

(a) 2-year return level

(c) 10-year return level

(b) 5-year return level

(d) 30-year return level

Comparison of the 2, 5, 10 and 30-year return levels between 70 the adjusted MPS downscaling 60 and three stations: Beijing, 50 Miyun and Yanqing (red circle). 40 🚖 30 E 20 10