METHOD

ppm/(umol/m²s)

Sojung Sim*, Sujong Jeong (Seoul National University)

Climate

c/11 window

1. Bayesian inverse modeling framework in Seoul

METHOD

2. Data

1 Observation

Using CO₂ concentration data from 4 observation sites and OCO-2 satellites when passing through Seoul

② Carbon emission (ODIAC)

*Open-source Data Inventory for Anthropogenic CO*₂

Calculation of CO_2 emissions from fossil fuels by 1km and 1 month

- Monthly data to hourly by applying temporal scale factor

Sojung Sim*, Sujong Jeong (Seoul National University)

2. Data

② Carbon emission (ODIAC)

Open-source Data Inventory for Anthropogenic CO₂

Modification of space

③ Carbon uptake (CASS)

CO₂ uptake by various vegetation resources like urban forests and park by 250m, 1 hour

CArbon Simulator from Space

(Seoul National University)

2. Data

④ Footprint

- Sensitivities of observation point to the upwind emission source area (influence), 1 hour & 1 km
- 1000 particles, 24h backward

④ Footprint

- Sensitivities of observation point to the upwind emission source area (influence), 1 hour & 1 km
- 1000 particles for each column level, 24h backward for satellite

(6) Prior emission error covariance (Q) - Q inflation to match Gaussian best fitting

RESULT

Climate

1. Spatial distribution of carbon emissions in Seoul

- The average value of prior and posterior carbon emissions in April 2020 were 26.376 µmol/(m² s) and 28.872 µmol/(m² s), respectively.
- As a result of verifying urban carbon emissions over Seoul through the Bayesian inverse model, it was found that **posterior carbon emissions increased by 9.5%**.
- In other words, it means that the prior carbon emissions were underestimated, and this trend was evident in the western part of Seoul.
- The uncertainty of carbon emissions was compared to verify the performance of the Inverse model, and it was reduced by 11.2% through the Inverse model.

2. Time series of carbon emissions in Seoul

<Time series of carbon emission (daily mean)>

<Comparison of emission correction ratio and uncertainty reduction according to input data>

	0C0-2	ground	all	all, bio T
Correction ratio	1.13%	8.62%	9.55%	9.46%
Uncertainty reduction	0.06%	11.19%	11.20%	11.20%

- If only OCO-2 was included as observation, it would be significantly corrected on April 5 when the satellite past.
- In the case of 4/5 it can be seen that it was largely corrected by satellite observation rather than ground observation.
 - → The OCO-2 data can only be corrected on a specific day, but the degree of correction on that day is very large.
- When both ground and satellite observations(all observation data) were used, the correction was greatest, and the uncertainty was also significantly lowered.
- There was no significant change in the case of additional considering the vegetation effect, but the ratio of increase in emission correction was slightly lowered.