Procedure for examining long-term Arctic shoreline displacement from multispectral satellite data

<u>Tua Nylén^{1,2},</u> Carlos Gonzales-Inca¹, Mikel Calle Navarro¹ EGU23, 28.4.2023

DOI: <u>https://doi.org/10.5194/egusphere-egu23-11651</u> Contact: tua.nylen@utu.fi ¹ University of Turku, Finland
² University of Helsinki, Finland

Climate change and Arctic coastline

- Arctic coast facing rapid, irreversible changes due to melting sea ice and permafrost
- Coastal communities need local-scale information to adapt to further changes
- Local high-resolution dataset and global coarse-resolution dataset exist

Call for pan-Arctic, "high"-resolution shoreline displacement information

Aims

Step 1

- Develop scalable and transferable approaches for producing 40-year Arctic shoreline time-series at 30-meter resolution
- 2. Report remaining challenges and limitations
- 3. Exemplify geomorphological applications of the outputs: mapping change hotspots, coastal erosion and deposition, delta development

Step 2

 First circumpolar maps of Arctic shoreline displacement between 1984 and 2022

Sentinel-2 true color image, 26.8.2022, Ny-Ålesund, Svalbard

Kongsfjorden

Data

- Open multispectral satellite image collections
- Provide global coverage, long time-series and local-scale data
 - Landsat 5: 1984–2011
 - Landsat 7: 1999–
 - Landsat 8: 2014–
 - Sentinel-2: 2017-
 - (Landsat 9: 2022–)

Ny-Ålesund

Main challenges

- Size of the area
- Number and size of satellite images
- Data availability and quality due to climate and light conditions
- Classification challenges:
 - 1. Clouds and cloud shadows
 - 2. Extensive intertidal zones (cause by short-term water level fluctuations)
 - 3. Mountain shadows
 - 4. Ice and snow
 - 5. Suspended sediment

EGU23 | ITS1.7/GM2 | 28.4.2023 | Nylén, Gonzales-Inca, Calle Navarro

Sentinel-2 true color image 17.8.2022 Tana River delta, Norway

Landsat 5 true color image 19.8.1990 Near Ny-Ålesund, Svalbard

Approach

- Cloud computing in Google Earth Engine
- Data fusion and algorithm fusion
- Post-classification decision fusion over long time-steps (5-year)
- Calibration (study area 1)
 - Independent validation dataset 2021–2022
- Validation (study area 2)
 - Independent validation dataset 2021–2022

Data fusion & algorithm fusion

- Data fusion: complementary spatial data to focus analysis and train classifier
 - OpenStreetMap coastline
 - MERIT Hydro hydrological land cover data
 - Arctic DEM 2 m
- Algorithm fusion: calculating final class layer as composite of two initial classes
 - Sunlit areas: NDWI (normalized difference water index)
 - Mountain shadows: random forest supervised classification

EGU23 | ITS1.7/GM2 | 28.4.2023 | Nylén, Gonzales-Inca, Calle Navarro

Images processed, Tanafjorden

Efficiency

- Reproducible code in GitHub (to be published soon)
- Recommended tile size: up to 50 km * 50 km
- Images processed: 400-600 / tile
- Processing time: 30-60 min / tile
 - Several tiles in parallel
- Output file size: < 1.5 MB / tile

Time-step	Landsat 5	Landsat 7	Landsat 8	Sentinel-2	ALL
1984–88	56	-	-	-	56
1989–93	39	-	-	-	39
1994–98	35	-	-	-	35
1999–2003	1	28	-	-	29
2004–08	38	24	-	-	62
2009–13	21	25	15	-	61
2014–18	-	33	35	29	97
2019–22	-	35	30	55	120
Total	123	143	80	84	430

Validation results

Accuracy of the 2019–2022 outputs:

- Overall accuracy: 99 %
- Median error distance of the shoreline: < 15 m (< half of pixel size)
 - 13 m for Tanafjorden
 - 9 m for Ny-Ålesund
- Remaining inaccuracies:
 - Moving glacier margins
 - Intertidal zones
- (Older time-steps currently not validated)

Application examples

- 1. Identifying coastal change
- Examples of calculating change intensity and trends
- Tanafjorden hotspots: tidal flats, Tana River delta

Application examples

2. Tana delta hotspot

- Outputs indeed provide data in resolution sufficient for examining local-scale processes
- High amount of new spatial-temporal information
 - Even small scale pier construction visible

Application examples

3. Change in the glaciated coast

- Lower data availability in 80s and 90s still issue
- Long-term glacier margin retreat visible
 - Up to 1000 m / decade

Probability

of

Thank you!

<u>Tua Nylén^{1,2}</u>, Carlos Gonzales-Inca¹, Mikel Calle Navarro¹ EGU23, 28.4.2023

DOI: https://doi.org/10.5194/egusphere-egu23-11651

Contact: tua.nylen@utu.fi Slides available as supplementary material GitHub repository available upon request

EGU23 | ITS1.7/GM2 | 28.4.2023 | Nylén, Gonzales-Inca, Calle Navarro

¹ University of Turku, Finland
² University of Helsinki, Finland

13