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Basics of the capacity expansion problem for energy systems

We use cost-optimisation models to generate scenarios for long-term planning
of energy systems.

- Decision variables for capacity expansion (investment) as well as

operations over a certain time period.
+ Constraints to ensure that demand is met while the network operates
within technical limits (transmission constraints, capacity factors).
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Context

« High-resolution model for the
European energy system
(based on PyPSA-Eur).

« Linear program.

+ Net zero emissions enforced.
- Greenfield optimisation for 2050.

Caveat: some results in this presentation are
from preliminary lower-resolution models.
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Near-optimal spaces and dimension reduction

Definition: near-optimal space
Let “maxcx s.t. Ax < b” be a linear program with optimum value c*, where A is
an m x n matrix. The e-near-optimal feasible space of the linear program is

F.={xeR" |Ax<bandcx<(1+g)c"}

F. is a convex polyhedron, but has impractically many dimensions. We map
down to a lower-dimensional space in two steps:

1. Project to only investment variables.
2. Aggregate to a small number of key solution variables.

Example key solution variables: total ) ) investment etc.



Near-optimal spaces and dimension reduction

1. Project to only investment variables.
2. Aggregate to a small number of key solution variables.

Near-optimal feasible space Near-optimal feasible space Reduced near-optimal
(millions of dimensions) of investment variables feasible space
(hundreds of dimensions) (a few dimensions)

1. projection 2. dim. reduction
s —_— s

Ask: “If I only had a few variables to describe the feasibility of the whole system...”



Approximating the reduced near-optimal space

We approximate the reduced near-optimal space by finding vertices using model
optimisations with different objectives d.
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Approximating the reduced near-optimal space

We approximate the reduced near-optimal space by finding vertices using model
optimisations with different objectives d.
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Example: wind vs. solar in Europe
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Example: wind vs. solar in Europe
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Example: wind vs. solar in Europe
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Example: wind vs. solar in Europe
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slack.

Weather years can have an
effect on the space.

So can cost scenarios.

Intersection represents
robust designs.



Example: wind vs. solar in Europe

- Intersection represents
robust designs.

| | |
200 Baselinex1357 - « This is the near-optimal
L ; —— expensive-wind-1987
~_ expensive-solar-1987 space for our model,
— 250 9 9
= \ projected to total wind and
> | , ; ; ; :
< N solar investment, 5% cost
— 200 }
2 N \ - slack.
< il ,
£
2 0 \ ' ' \. + Weather years can have an
Q \
2 oA\ ' i \ i effect on the space.
T . .
'3 100 +—— \ ' ! —/\ ‘ + So can cost scenarios.
= —
2

(&)
o

+ But how can we refine this

i ?
0 o 100 1o a0 a0 300 to subregions of Europe?
Total onshore wind investment [bn EUR] 8




1. Choose a region R of interest (ex: Germany, Nordics, British Isles, Iberia,
etc.).
2. Increase spatial resolution of model in and around the region.
3. Introduce 75% net yearly energy self-sufficiency constraint.
4. Choose 12 scenarios: {1985, 1987, 2010} x {baseline, expensive wind,
expensive solar, solar land-use restricted}
5. Compute near-optimal space for each scenario, reduced to 8 key variables:
« Total investment in onshore wind in {R, Europe without R}
« Total investment in offshore wind in {R, Europe without R}

- Total investment in solar in {R, Europe without R}
« Total investment in H2 infrastructure in {R, Europe without R}

6. Intersect above 12 spaces for robust designs.



Example: onshore wind Nordics vs. rest of Europe
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Questions about regional trade-offs

1. Are any technologies indispensable for certain regions?

2. Can decisions in one region significantly affect the feasible space for the
rest of the system?

3. Can decisions in the rest of the system significantly affect the feasible space
for the one region?
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1: Are any technologies indispensable for certain regions?
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1: Are any technologies indispensable for certain regions?
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1: Are any technologies indispensable for certain regions?
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1: Are any technologies indispensable for certain regions?
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2: Effect of choices in one region on rest of system
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2: Effect of choices in one region on rest of system
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2: Effect of choices in one region on rest of system
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3: Impact of European decisions on subregions
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3: Impact of European decisions on subregions
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Conclusion & Outlook

Insights:
« Decomposing near-optimal spaces into spatial components is an effective
tool for revealing regional trade-offs.

« There is significant geographical and technological flexibility for renewable
investments within 5% of cost-optimality.

« Lack of investment in one region can force the hand of the rest of Europe in
some cases.

Keep in mind:

- Numbers can be sensitive to model assumptions & cost slack.
(Still, intersection of multiple scenarios is an attempt at robustness.)
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Link to the Github repo:

Feel free to talk with me (Koen van Greevenbroek) or Aleksander Grochowicz

about this!

Thank you! Questions?
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