Greenhouse gas (CO$_2$, CH$_4$) alteration in shallow ice at Larsen blue-ice area, Northern Victoria Land, East Antarctica

Giyoon Lee1, Jinho Ahn1, Ikumi Oyabu2, Chang Hee Han3, Kajal Kumar1, Kenji Kawamura2-4-5

1School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea
2National Institute of Polar Research, Tokyo, Japan
3Department of Earth System Sciences, Yonsei University, Seoul, South Korea
4Department of Polar Science, School of Multidisciplinary Sciences, The Graduate University for Advanced Studies, SOKENDAI, Tachikawa, Japan
5Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan

Correspondence to: Jinho Ahn (jinhoahn@gmail.com)

1. Introduction

To date, CO$_2$ and CH$_4$ concentrations are relatively stable for the last 800 kyr analyzing air bubbles occluded in Antarctic ice cores. CO$_2$ and CH$_4$ concentrations can be altered due to high dust contents and/or microbial activity in ice cores (Rohde et al., 2008; Lee et al., 2020).

2. Study area

Surface ice sample (a), and 2–10 m long ice cores were collected. Dust bands with gentle folding structures in the mid-to downstream part were observed, while severely folded dust bands were observed (e.g. B and Z fold) (Fig. 3b).

3. Gas analysis

• CH$_4$ and CO$_2$ concentrations were measured from Seoul National University by wet and dry extraction methods, respectively.
• CH$_4$ concentration records from the Larsen BIA area generally show an increasing trend from the subsurface to a depth of ~0.35–1.15 m. Then gradually decreases until it reaches to ~0.6 m. CO$_2$ concentration in the Larsen BIA area shows a gradual decrease from the subsurface until a depth of ~4.6 m where the concentration variation stabilizes. CO$_2$ concentration in Larsen BIA ice samples (depth < 4.6 m) is elevated compared to EDC and WAIS Divide records.

4. Pb analysis

• Pb from 1.35 m, 9.05 m depth ice of LS23 and from three 1.95 m depth ice of Larsen BIA ice cores are not significantly altered by modern aerosols.
• Pb concentration in Larsen BIA ice samples (depth < 4.6 m) is elevated and/or depleted compared to EDC and WAIS Divide records.

5. Conclusion

- Greenhouse gas (CO$_2$, CH$_4$) concentrations are altered at shallow depth of ~1.0–6.5 m of Larsen BIA. CH$_4$ concentration generally show an increasing trend from the surface to a depth of ~0.35–1.15 m. Then gradually decreases while CO$_2$ concentration shows a gradual decrease from the subsurface until a depth of ~4.6 m.
- Based on 813C–N$_2$ modern air intrusion has not caused the greenhouse gas alteration.
- Based on Pb206, biological activity is less likely for altering the greenhouse gas concentrations in the shallow ice samples.
- Based on the Pb ice core results, greenhouse gas alteration is not related to modern aerosol intrusion.

6. References

- Hu, H. et al., 2022: 813C of CO$_2$ in a Tibetan Ice Core confirms its Chronology to the Holocene. GRL, 46, e2022GO009056.
- Lee, J. S. et al., 2009: Recent methane emissions in Greenland ice cores associated with high dust concentrations, Geochimica et Cosmochimica Acta, 75, 3963-3977.
- Lüthi D., et al., 2008: High-resolution carbon dioxide concentration record 650,000–800,000 years before present: Nature 453, 379-382.
- Masuruzzo and Hinckley, 2001. Trace metal suites in Antarctic pre-industrial ice are consistent with emissions from quiescent draining of volcanics worldwide. EPIS, 186, 33-43.
- Monnin, E. et al., 2005, Evidence for substantial accumulation rate variability in Antarctica during the Holocene, through synchronization of CO$_2$ in the Taylor Dome, Dome C and DML ice cores, EPIS, 190, 45-66.