

Angeliki Kourmouli^{1,2}, Liz Hamilton^{1,3}, Rebecca Bartlett³, Rosemary Dyson⁴, James Gore^{1,3}, Robert Grzesik^{1,3}, Iain Hartley^{1,5}, Iain Johnston^{1,6}, Alexandra Kulawska^{1,3}, Carolina Mayoral^{1,7}, Susan Quick^{1,3}, Michaela Reay^{1,8}, Zongbo Shi^{1,3}, Andy Smith^{1,9}, Sami Ullah^{1,3}, Claire Ziegler¹ and A.Rob MacKenzie^{1,3}

1 MINUTE SUMMARY

INTRODUCTION

Anthropogenic CO₂ emissions have resulted in elevated CO₂ in the atmosphere and this rise is predicted to continue¹. Increases in CO_2 have fertilised forest ecosystems and led to an uptake of CO_2 into plant and soil biomass. Early findings at Birmingham's Institute of Forest Research Free - Air Carbon Dioxide facility (BIFoR FACE) showed increased photosynthetic uptake², fine root net primary productivity³ and soil respiration⁴, indicating increased carbon (C) allocation belowground. Roots play a key role in whole-plant functions, biogeochemical cycling and interaction with biotic factors, thus based on the ear-ly findings, we expect that the increased C allocation belowground will have an impact on root traits. Site Description

AFFILIATIONS

¹Birmingham's Institute of Forest Research, BIFoR, ; ²Lancaster Environment Centre, Lancaster University, UK; ³School of Geography, Earth & Environmental Sciences, University of Birmingham, UK; ⁴School of Mathematics, University of Birmingham, UK; ⁵School of Geography, University of Bergen, NO; ⁷School of Biosciences, University of Birmingham, UK; ⁸School of Chemistry, UN; ⁹School of Biosciences, University of Birmingham, UK; ¹School of Chemistry, UK; ⁹School of Biosciences, University of Birmingham, UK; ¹School of Chemistry, UN; ⁹School of Biosciences, University of Birmingham, UK; ¹School of Chemistry, UN; ⁹School of Biosciences, University of Birmingham, UK; ¹School of Chemistry, UN; ⁹School of Biosciences, UN; ¹School of Biosciences, UN; ¹School of Chemistry, UN; ¹School of Biosciences, UN; ¹School of Biosciences, UN; ¹School of Chemistry, UN; ¹School of Biosciences, UN; ¹School of Biosciences, UN; ¹School of Chemistry, UN; ¹School of Biosciences, UN; ¹School of Biosciences, UN; ¹School of Biosciences, UN; ¹School of Chemistry, UN; ¹School of Biosciences, UN; ¹School of Biosciences, UN; ¹School of Chemistry, UN; ¹School of Biosciences, UN; ¹School of Biosciences, UN; ¹School of Biosciences, UN; ¹School of Biosciences, UN; ¹School of Chemistry, UN; ¹School of Biosciences, UN; ¹School of Natural Sciences, Bangor University, UK

Does elevated CO₂ alter root traits after 5 years in a mature temperate woodland?

No differences in: Root standing stock Specific root length . Root tissue density

T Fine root traits

More flexibility in fine root biomass response under eCO₂ post disturbance

> Fine root standing stock under eCO₂

RESULTS

REFERENCES

¹Intergovernmental Panel on Climate Change; Core Writing Team; Pachauri, R.K.; Meyer, L.A. (Eds.) Climate Change 2014: Synthesis Report, Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2014; 151p. ²Gardner, A., Ellsworth, D., Crous, K., Pritchard, J., Mackenzie, A.R. (2021). Is photosynthetic enhancement sustained through three years of elevated CO₂ exposure in 175-year-old Quercus robur? *Tree* Physiology, 42 (1), 130-144 , Kulawska, A., Kourmouli, A., Hamilton, L., Shi, Z., MacKenzie, A.R., Dyson, R.J., Johnston, I.G. (2022). Quantification and uncertainty of root growth stimulation by elevated CO₂ in mature temperate deciduous forest. Science of the Total Environment, 85 J., Barba, J., Bartlett, R., MacKenzie, AR., Hartley, I., Shi, Z. (2023). Initial carbon and nutrient responses to free air CO₂ enrichment in a mature deciduous woodland. ⁴Kourmouli, A., Hamilton, (submitted) ⁵Rstudio Team (2019)

CONCLUSIONS

Significantly higher fine root standing stock under eCO₂, 2 consecutive years post winter moth infestation disturbance, however only in the O horizon. No differences in specific root length and root tissue density.

Stay in touch

www.birmingham.ac.uk/bifor

@BIFoRUoB

a.kourmouli@lancaster.ac.uk

