Analysis and Evaluation of Best Management Practices (BMPs) for WES Conservation in an Agricultural Watershed

Triveni Majhi, Meenu Ramadas Ph. D.

School of Infrastructure, Indian Institute of Technology Bhubaneswar, Khordha, Odisha, India

RESULTS OF THE STUDY

(a)

10 - 15

15 - 20

20 - 25

— River

CONCLUSIONS

INTRODUCTION

Due to lack of conservation practices, there is increase in runoff soil erosion and nutrient losses

The main off-site
effect of soil erosion is
transport of sediment
and agricultural
pollutants into
streams and reservoirs

Scientists predict that water demand will exceed supply by 40% by 2030, due to combined climate change and population growth

Watershed Management integrate the planning of land and water to balance healthy, ecological, economic conditions

Meeting food demand with decreasing top soil quality is a challenge

Best management practices(BMPs) decrease runoff velocity by trapping and lowering it

METHODOLOGY

Table 1. Different ways to simulate BMPs representation in SWAT Hydro. Model

SI.	ВМР	SWAT	Parameter modified	SI.	ВМР	SWAT parameter	Parameter
No.		parameter (Input	value	No.		(Input files)	modified value
		files)					
1	CONTOUR FARMING	CN2 (.mgt)	Reduction of calibrated	3	BUFFER	VFSI (.ops)	1
			value by 3 units		FILTER		
		USLE_P	0.6 for slope 1 – 6%		STRIPS	VFSRATIO (.ops)	40
		(.mgt)	0.7 for slope 6 – 18%			VFSCON (.ops)	0.5
			0.8 for slope >18%			VFSCH (.ops)	0
2	STRIP CONTOUR CROPPING	CN2 (.mgt)	Reduction of calibrated	4	GRASSED	GWATI (.ops)	1
			value by 3 units		WATERWAYS		
		USLE_P (.mgt)	0.3 for slope 1 – 6%			GWATN (.ops)	0.35
			0.35 for slope 6 – 18%			GWATSPCON	0.005
						(.ops)	
			0.4 for slope >18%			GWATW (.ops)	5 m
						GWATD (.ops)	3/64 × GWATW
							(m)
						GWATL (.ops)	HRU length (km)
						GWATS (.ops)	0.75 × HRU slope

RESULTS OF THE STUDY

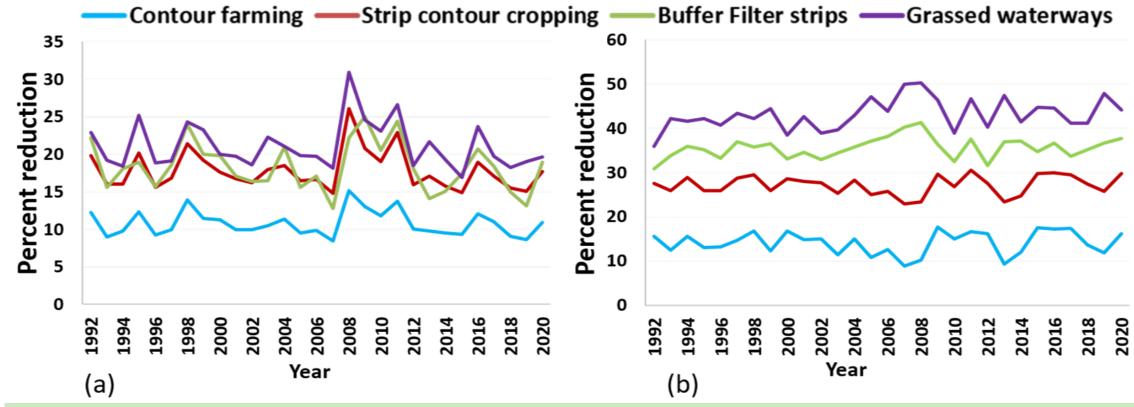


Fig 3. Comparison of reduction (in %) of (a) annual sediment yield and (b) annual nitrogen loss in the most critical subbasin #12 after simulation of different BMPs in the watershed

The study targeted spatial assessment of vulnerability of an agricultural watershed (Jambhira) located in India to erosion and sediment loading using SWAT model, and comparison of effectiveness of BMPs in reducing sediment output and loss of nutrients such as nitrogen, that will improve overall quality of WES

METHODOLOGY

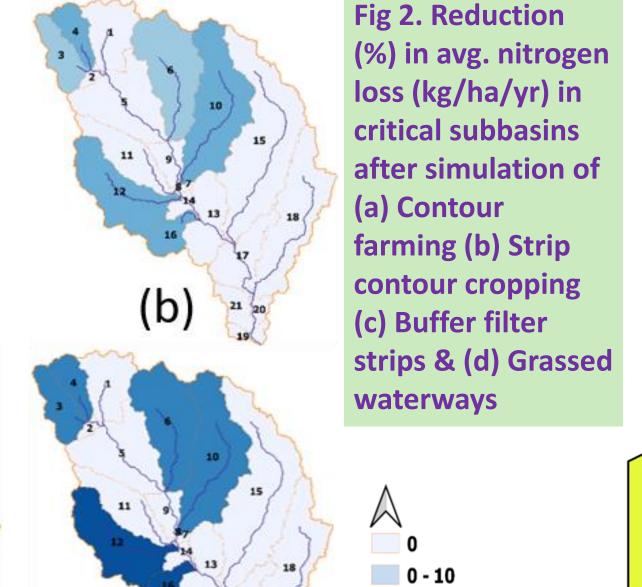
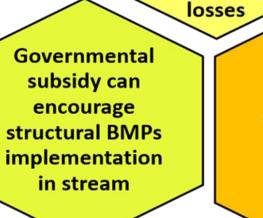



Fig 1. Reduction (%) in avg. sediment yield (kg/ha/yr) in critical subbasins after simulation of (a) Contour farming (b) Strip contour cropping (c) Buffer filter strips (d) Grassed waterways

(c)

(d)

10 - 20


20 - 30

30 - 40

40 - 50

Identifying critical soil SWAT is an erosion sub useful tool for basins can help implementing watershed watershed management management planners to practices prioritize them Grassed the most effective BMP in reducing

and increase

crop yield

Land use/land

assumed to

be constant

with time

REFERENCES

- https://doi.org/10.1002/hyp.6890
- https://doi.org/10.1016/j.still.2019.04.016

sediment and

nitrogen

https://doi.org/10.1016/j.scitotenv.2020.140737