Impacts of uni- and multivariate bias adjustment methods on simulations of hydrological signatures in high latitude catchments Faranak Tootoonchi, Andrijana Todorovic, Thomas Grabs, Claudia Teutschbein

1. Motivation: Bias-adjustment (bias correction) methods are becoming more complicated

2. Data and Methods

2 variables

10 RCMs

50 catchments

4 bias adjustment methods

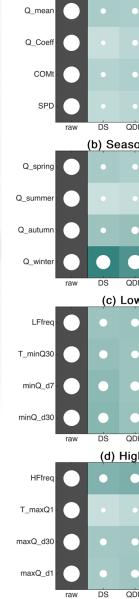
Univariate	M
Distribution Scaling (DS)	Co
Quantile Delta Mapping (QDM)	M Qua

2.1 Streamflow signatures

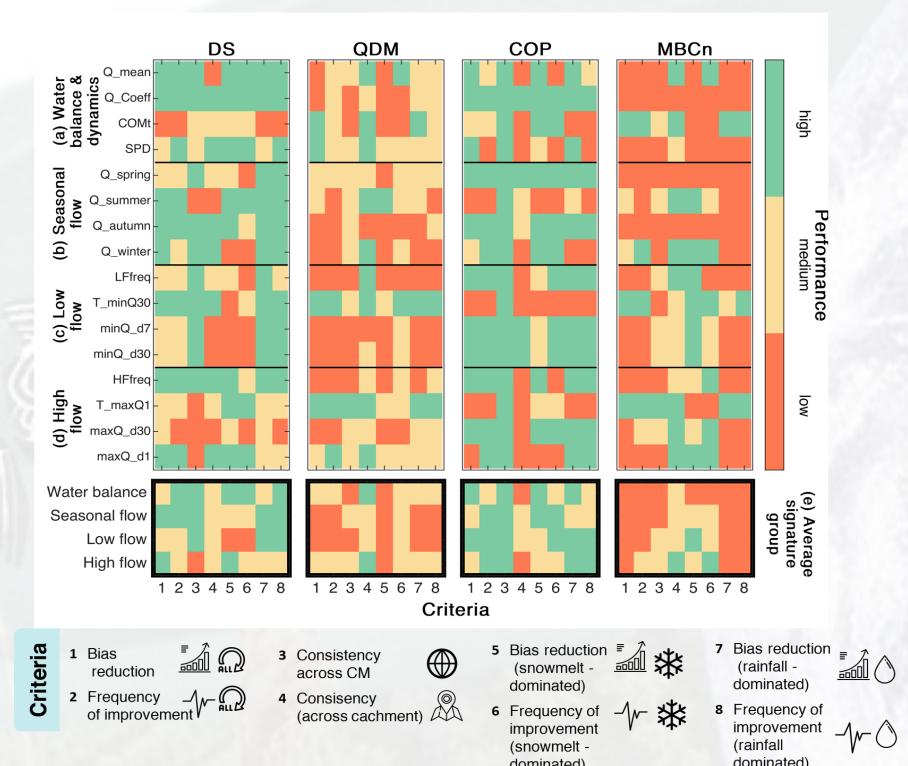
(a) Wate balance	1	Mean Flow	(Q mean)	$[mm \cdot day^{-1}]$	
& Runoff	2	Runoff coefficient	(Q Coeff)	[-]	(c) Low Flow
Dynamicas	3	Center of the mass	(COM)	[day of the year]	\approx
	4	Spring pulse day	(timSPD)	[day of the year]	
(b) Seasonal Flow	5	Spring flow	(Qmean spr)	$[mm \cdot day^{-1}]$	
	6	Summer flow	(Qmean sum)	$[mm \cdot day^{-1}]$	(d) High Flow
	7	Autumn flow	(Qmean aut)	$[mm \cdot day^{-1}]$	↑
~~~~	8	Winter flow	(Qmean win)	$[mm \cdot day^{-1}]$	

#### How can impact modelers decide on what approach to choose from?

lultivariate


opula-based Methods

[ultivariable ntile Mapping (MBCn)


16 streamflow signatures

Q,

3. Result:



In the northern catchments, initial raw biases were consistently reduced with all BA methods in all 16 signatures. In southern catchments, the difference was rather between distribution-based and distribution-free methods.



• On average, there were slight differences between univariate and multivariate methods, which were often overshadowed by the strong differences between distribution-free and distribution-based methods.

• Noticeable differences between uni- and multivariate methods only emerged for the snowmelt-driven catchments (located above 60°N), where advanced multivariate methods resulted in frequently better performance compared to their univariate counterparts.



UPPSALA UNIVERSITET

• Not a single bias adjustment method enhances performance in all analyzed signatures.

Univariate distribution scaling (DS) performs well specifically in rainfall-driven catchments.

Multivariate methods perform better for low-flow signatures in snowmelt-driven catchments.

Want to read more.





## 4. Highlights:

Bias adjustment improves accuracy and consistency of simulated hydrological signatures.





afaranak_ttch faranak.tootoonchi a slu.se  $\searrow$