

Labile substrate availability shapes interactions in a synthetic chitin-degrading soil bacterial community

Moritz Mohrlok, Lauren Alteio, Ksenia Guseva, Julia Mor Galvez, Erika Salas Hernández and Christina Kaiser

SSS 4.7 - Microbial growth, turnover and functioning in soils: modelling and experimental advances

"Scavenger"

Chitin Degradation

- Chitin decomposition is a complex process
- "Social" interactions are often observed within chitin-degrading communities
- Interactions affect decomposition efficiency

Model system to study how bacterial interactions and self-organisation can affect complex substrate degradation in soil

Chitin Polymer

Beier & Bertilsson (2013), Pollak et al. (2021)

Beier & Bertilsson (2013), Pollak et al. (2021)

soil

Chitin Polymer

Model Consortium

- Three isolated, culturable soil bacteria from different phyla
- Genomic potential to produce different chitinases (MetaCyc)

Phylum	Species
Firmicutes	Paenibacillus alginolyticus
β-Proteobacteria	Paraburkholderia xenovorans
Actinobacteria	Solirubrobacter soli

Experimental Setup

MicroResptm system

Campbell et al. 2003, Evans et al. 2017

Respiration Data

Final Community Composition

16s Amplicon Sequencing

Main Findings

NAG availability affected respiration and final community composition

Signs of both competition and cooperation, depending on substrate conditions

Increased survival of less competitive strains with more complex substrate

Summary & Conclusion

- Strong competitor grows fast on labile substrate and outcompetes the other strains
- No positive interactions possible as weaker competitors are too low in abundance or completely removed

- Weaker competitors (slower growers) are not immediately overpowered
- Stable multispecies community
 - Stabilized by metabolic crossfeeding (data not shown)
- More efficient chitin decomposition
 - Production of different chitinases?

Low availability of labile substrate increased survival of less competitive strains, allowing positive interactions and affecting the decomposition of complex SOM

Thank you!

Margarete Watzka

TER

Hernández

Hannes Schmidt

Summary & Conclusion

- Strong competitor grows fast on labile substrate and outcompetes the other strains
- No positive interactions possible as weaker competitors are too low in abundance or completely removed

- Weaker competitors (slower growers) are not immediately overpowered
- Stable multispecies community
 - Stabilized by metabolic crossfeeding (data not shown)
- More efficient chitin decomposition
 - Production of different chitinases?

Low availability of labile substrate increased survival of less competitive strains, allowing positive interactions and affecting the decomposition of complex SOM

Contact me!

moritz.mohrlok@univie.ac.at

@MMohrlok

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 819446)

References

Images:

- Chitin structure: Modified from Berezina, N. (2016). Production and application of chitin. In *Physical Sciences Reviews* (Vol. 1, Issue 9). De Gruyter. https://doi.org/10.1515/psr-2016-0048
- MicroResp setup: https://www.microresp.com/, last accessed on 06.04.23

Literature:

- Beier, S., & Bertilsson, S. (2013). Bacterial chitin degradation-mechanisms and ecophysiological strategies. *Frontiers in Microbiology*, 4(JUN), 1–12. https://doi.org/10.3389/fmicb.2013.00149
- Campbell, C. D., Chapman, S. J., Cameron, C. M., Davidson, M. S., & Potts, J. M. (2003). A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil. *Applied and Environmental Microbiology*, 69(6), 3593–3599. https://doi.org/10.1128/AEM.69.6.3593-3599.2003
- Evans, R., Alessi, A. M., Bird, S., McQueen-Mason, S. J., Bruce, N. C., & Brockhurst, M. A. (2017). Defining the functional traits that drive bacterial decomposer community productivity. *ISME Journal*, *11*(7), 1680–1687. https://doi.org/10.1038/ismej.2017.22
- Pollak, S., Gralka, M., Sato, Y., Schwartzman, J., Lu, L., & Cordero, O. X. (2021). Public good exploitation in natural bacterioplankton communities. In *Sci. Adv* (Vol. 7).

Supplementary Slides

Experimental Setup - MicroResp

Final Community Composition

Chitin Oligomers (UPLC-MS)

Highest Chitobisoe concentration in Trio-treatment

Metabolites (HPLC)

