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In a nutshell
• The conductivity at Jupiter is almost always

computed assuming a simple mono-energetic
auroral electron precipitation at high lati-
tudes.

• The effect of a more realistic broadband elec-
tron distribution on the conductivity is inves-
tigated.

• Our model shows that mono-energetic distri-
butions either overestimate (up to 1.6-fold)
or underestimate (up to 10-fold) the conduc-
tance, depending on the mean energy of the
precipitating electrons.

1. Introduction
The Pedersen ionospheric conductivity and con-
ductance at Jupiter are key elements when consider-
ing the exchange of momentum and energy between the
ionosphere and the magnetosphere.
Most models assume a mono-energetic distribution
to represent the electron flux (e.g. Gérard et al., 2020).
However, based on the recent findings from the Juno
spacecraft, it appears that the impinging electron dis-
tribution is best approximated with a broadband dis-
tribution (e.g. Mauk et al., 2017; Salveter et al., 2022).
What are the effects of such a distribution on
the conductivity/conductance?

2. Ionospheric model
The ionospheric model presented in Gérard et al. (2020)
is adopted:

• Altitude distributions of H, H2 and CH4 taken
from Grodent et al. (2001) model.

• Above the homopause, conductivity mainly
driven by the H3

+ ion:
H2

+ + H2 −−→ H3
+ + H.

• Close to and below the homopause, rapid reaction
of CH4 with H3

+ produces hydrocarbon ions
responsible for the conductivity. CH5

+ is con-
sidered as the main hydrocarbon product (Wang
et al., 2021):

H3
+ + CH4 −−→ CH5

+ + H2.

• H2
+ profile computed using the formulation given

by Hiraki & Tao (2008).

3. Conductivity σP and conductance ΣP

σP = e2ne
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i )

]
, ΣP =

∫
σP dz.

• e: electron charge.
• νen(νin): electron (ion)-neutral collision frequency.
• me(mi): electron (ion) mass.
• ωe(ωi): electron (ion) gyrofrequency.
• z: altitude.

4. Kappa distribution
The kappa function f is chosen to model the broadband shape of the elec-
tron energy distribution (Coumans et al., 2002). It is defined by the total
energy flux Q0 (unit: mW.m-2), the mean energy ⟨E⟩ (unit: keV) and an
additionnal parameter κ describing the high energy tail of the distribution:
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Fig. 1: Representation of a
maxwellian and a kappa dis-
tributions with the same inten-
sity at the energy peak. At
low energy, both distributions are
similar. However, the kappa dis-
tribution has a high-energy tail
that decreases as a power law.

Fig. 2: Kappa distribution
displayed over electron distri-
bution measurements. The
data points represents the me-
dian values of the intensities
measured by Juno/JEDI over
the main emission during per-
ijoves 1 to 20. With a value
of κ = 2.5, the kappa function
appears to be a good repre-
sentation of the electron en-
ergy distribution. 102 103

Energy (keV)

103

104

105

In
te

ns
ity

 (c
.s

1 .
m

2 .
sr

1 .
ke

V
1 )

Kappa distribution
JEDI data

5. Results
The curve on Fig. 4 is explained by the existence of a conductance maximum around the mean
energy value Emax=30 keV (Gérard et al., 2020):

• (1)-(3): Mean energy away from Emax → enhanced broadband conductance.
• (2): Mean energy close to Emax → enhanced mono-energetic conductance.
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Fig. 3: Comparison between mono-
energetic and broadband vertical profile
conductivities (Q0=100 mW.m-2, ⟨E⟩=40
keV). Understandably, the broadband distri-
bution leads to a broader vertical distribution.
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Fig. 4: Ratio between mono-energetic (m) and
broadband (bb) conductances as a function of
the mean electron energy (Q0=100 mW.m-2).
Even if the ratio greatly depends on the mean
energy, it is almost never equal to 1.

6. Conclusions
• Compared to a broadband distribution, the conductance deduced from a mono-

energetic distribution is either overestimated by a factor 1.6 in the 15-100
keV range or underestimated by a factor of 10 or more outside this range.

• The next step of this work will be to update the models and conductance maps to
better fit the Juno JADE and JEDI observations.
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