Imperial College London

Point Data Assimilation in Firedrake and Icepack

Reuben W. Nixon-Hill^{1,2}, Daniel Shapero³, Colin J. Cotter², David A. Ham²

¹ Science and Solutions for a Changing Planet DTP, Grantham Institute for Climate

Change and the Environment, Imperial College London

² Department of Mathematics, Imperial College London

³ Polar Science Center, Applied Physics Laboratory, University of Washington

Grantham Institute Climate Change and the Environment An institute of Imperial College London

Science and Solutions for a Changing Planet DTP

Point data are everywhere. Are we using them well?

Can measure

Can't measure

ICESat-2 Animation Credit: NASA's Goddard Space Flight Center, Animator Chris Meaney (KBRwyle) [Lead], Scientist Thorsten Markus (NASA/GSFC), Producer Rvan Fitzgibbons (KBRwyle), Project support Aaron E. Lepsch (ADNET)

"Ice core sampling in Green Bay, Lake Michigan" by NOAA Great Lakes Environmental Research Laboratory is licensed with CC BY-SA 2.0. To view a copy of this license, visit https://cre

Data Assimilation is an Inverse Problem: 'Control Method' or Constrained Optimisation

Data at specific points u_{obs}^i at X_i

 $J_{
m regularisation}$

Key Question: Which model-data misfit?

or

Reconstruct u_{obs}^{i} to $u_{interpolated}$ $J_{model-data misfit} = ||u_{interpolated} - u||_{N}$

Point Evaluate
$$u(X_i)$$

 $J_{\text{model-data misfit}} = \|u_{\text{obs}}^i - u(X_i)\|_N \forall i$

e.g.
$$J[\beta] = \frac{1}{2} \int_{\Gamma} n \cdot (\sigma^N - \sigma^D) \cdot (u^N - u^D) dA$$
 (Shapero et al., 2016)

😻 Firedrake

Mathematics...

$$-\nabla \cdot k \nabla u = f \qquad k = k_0 e^{q(x)}$$

$$\int_{\Omega} k_0 e^q \nabla u(x) \cdot \nabla v - f \nabla dx \not = 0$$

$$\forall v \in \text{P2CG}(\Omega)$$

...as (differentiable) code

from firedrake import *

```
omega = UnitSquareMesh(20, 20)
P2CG = FunctionSpace(omega, family="CG", degree=2)
u = Function(P2CG)
v = TestFunction(P2CG)
```

f = Constant(1.0) k0 = Constant(0.5) q = Function(P2CG).assign(...) bc = DirichletBC(P2CG, 0, "on_boundary")

F = (k0 * exp(q) * inner(grad(u), grad(v)) - f * v) * dx
solve(F == 0, u, bc)

Which Misfit To Use?

Estimating Log-Conductivity qwhere $k = k_0 e^q$ and $-\nabla \cdot k \nabla u = f$ for known f

Evaluate $u(X_i)$

$$\min_{q} J = \sum_{i=0}^{N-1} (u_{\text{obs}}^{i} - u(X_{i}))^{2} + J_{\text{regularisation}}$$

Reconstruct u_{obs}^i to $u_{interpolated}$

$$\min_{q} J' = \int_{\Omega} (u_{\text{interpolated}} - u)^2 dx + J_{\text{regularisation}}$$

scipy.interpolate.NearestNDInterpolator

Which Misfit To Use?

scipy.interpolate.LinearNDInterpolator

scipy.interpolate.CloughTocher2DInterpolator
(fill value=0.0)

scipy.interpolate.Rbf
(Gaussian Radial Basis Function)

Posterior Consistency: Do more points give me more accurate results?

Cross Validation Data Assimilation – Larsen C @ ICE PACK

Log-fluidities at different regularisation

Over Regularised

Stated error on velocity data from remote sensing seems too low...

 $\sigma_k^{\text{true}} \approx 3.4 \times \sigma_k$

Bad Data?

Bad Physics?

Advantages of Using a Point Evaluation Approach with *Firedrake* and *E* ICE PACK

For much more see the paper!

DOI: <u>https://doi.org/10.48550/arXiv.2304.06058</u> arXiv: <u>https://arxiv.org/abs/2304.06058</u>

Get in touch!

reuben.nixon-hill10@imperial.ac.uk

References

Shapero, D. R., Joughin, I. R., Poinar, K., Morlighem, M., and Gillet-Chaulet, F. Basal resistance for three of the largest Greenland outlet glaciers, Journal of Geophysical Research: Earth Surface, 121, 168–180, 2016.

Solve simple and complex ice flow models Customizable stress balance models Inverse solvers for data assimilation

Meshed Domain

Final Computed Velocity

Computed Thickness Change

From https://icepack.github.io/notebooks/tutorials/03-larsen-ice-shelf

$$J_{\text{regularisation}}(\theta) = \frac{\alpha^2}{2} \int_{\Omega} |\nabla \theta|^2 dx$$

Cross-validation error

