

Motivation

- Remove CO₂ permanently from the carbon cycle at large scale
- Make use of potentially high efficiencies of catalytic Carbon Dioxide reduction
- Combine Electrocatalysis with Photovoltaics for potential synergistic effects

Development of a photoelectrochemical process for CO_2 reduction at high "solar-to-carbon" efficiencies

General Experimental procedure

Experimental Design

Pretreatment for Cerium:

Silicon carbide sandpaper (1000 grid) honing under nitrogen stream (~10 min)

Electrolysis:

WE:Cerium – Foil or GalnSn on CuCE:PtRE:Ag/AgNO3Electrolyte:DMF | 2 M H_2O | 0.1M TBAPF₆ | CO₂1. Hold at Open Circuit Potential (3 min)2. Chronoamperometry (30 min)

XPS analysis for Cerium:

Survey + high resolution scans of C1s, O1s and Ce3d

Electrolysis at -3 V vs.
$$Ag/AgNO_3$$
:

Gaseous product:

- predominantly H₂ formation (GC)

Liquid Product:

- None detectable (HPLC / DAD)

Solid Product:

- blackish surface-bound compound
- oxidated at -1.25 V vs. Ag/AgNO₃

What is formed and can we deduce the reaction pathway?

Characterization of Cerium before electrochemical experiments by XPS analysis

BE [eV]	01s	Ce3d 5/2	Ce3d 3/2
Ce(III)	532.5	885.8	907.1
Ce (IV)	530	881.9	916.7

Binding energy reference values: NIST X-ray Photoelectron Spectroscopy Database, last access: 20th April 2023

Electrolysis in the presence of different dissolved gases and subsequent investigation of surface changes by XPS Scans

Observations:

In the presence of CO_2 :

- C1s at 291 eV increases while the width of 286 eV increases asymmetrically
- O1s at 530 eV [Ce(IV)] decreases
- Ce3d satellites decrease in intensity
- Ce3d slightly shifts to higher energies

Interpretation:

The changes of Ce3d might be explained by an increase of the oxidation state of cerium or a change in the chemical environment by e.g. the formation of a carbon species.

Observations for C1s and especially O1s support latter interpretation

Deconvolution of O1s - Peaks

- Relative amount of Ce(IV) compared to Ce(III) decreases
 - \rightarrow supports the interpretation of a species forming at the expense of Ce(IV).
- Additional O1s Peak around 535 eV shifts to lower binding energies after electrolysis.

→ O1s of adsorbed CO_2 on Ce(III): 535.1 eV → O1s of adsorbed CO_3^{2-} on Ce(III): 533 eV

O1s	532.5 eV (Ce(III))	530 eV (Ce(IV))	Ratio
Area "blank"	9327	2096	0.82
Area N2- CO2"	13457	2223	0.85
Area "CO2"	13210	673	0.95

Electrolysis at different Potentials and subsequent investigation of surface changes by XPS Scans

Observations:

 C1s at 290.5 eV (CO₃²⁻) increases in dependence of applied potential and the 286 eV Peak is shifted to lower binding energies

Interpretation:

1. Partial reduction of surface oxides due to applied potential leads to decrease in charge displacement of C1s - Peak (blank vs. electrolysis samples)

- 2. Competing processes:
 - H_2 formation at higher potentials (-3 V)
 - Reducton of CO₃²⁻ at lower potentials (-2V)

 \rightarrow Shift to lower binding energies in dependence of applied Potential

C1s for different Samples deconvoluted (4th)C1s for different Samples deconvoluted (Main)

C1s reference: Chengwu Yang et al., ChemPhysChem 2017, 18, 1874 - 1880

Formation of potentially catalysisinhibiting surface species **Cerium Fluoride**

Experimental:

 Conducting Electrolysis in the absence of H₂O

Additionally:

Conducting Cyclic Voltammetry in absence of H2O

Observations:

- F1s peak at 685 eV which can be assigned to CeF₃
- F1s Peak at 687.3 eV, which might be assigned to a precursor (degradation of PF₆_anion)
- Lower current density for CeF₃ surface

F1s references: Davide Barreca et al., Surface Science Spectra 13, 87 (2006)

Change in Product Formation with GaInSn as Working Electrode

Observations:

- After ~1000 sec of Electrolysis at -3 V a gradual decrease in bubbles (CO) forming on the GaInSn surface can be observed
- At the same time the current density does not decrease but even increases

Interpretation:

• Surface restructuring induces a change in catalytic activity, preferring a different reaction pathway towards dissolved product (Formic Acid)

Investigation: GalnSn

Time [sec]

Spectroscopic Operando Investigation

Operando Raman and RAS measurements to verify reaction pathway

Motivation:

The shift of adsorbed CO₂ to CO₃²⁻ to reduced carbon species as well as the reason for the product shift with GaInSn, might be clarified by monitoring the catalytic reaction mechanism under operating conditions (operando Raman, RAS)

Currently:

Design of Cell, capable to conduct Electrochemistry while the catalyst surface is spectroscopically investigated

