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ABSTRACT: The emission potential is a key factor controlling long-term emission from landfills. The 

uncertainty in quantifying the emission potential is high due to deterministic initial values and imperfect 

simulation models, which make the long-term prediction highly uncertain. This study investigates the 

feasibility of using the particle filter method to estimate the emission potential, in this paper represented 

by the mass of chloride present in the waste body. The particle filter was used to estimate the emission 

potential by assimilating leachate volume and concentration measurements. Our results show that the 

uncertainty in chloride mass is quantified and constrained. These results suggest that it is promising 

to use easily acquired time series measurements to estimate the emission potential related states.  
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1. INTRODUCTION 

The primary aim of a sustainable landfill is to be a final and safe storage facility for municipal solid 

waste materials, where polluting and harmful emission will always be under required thresholds.  

A convincing prediction of long-term emissions is required for developing a long-term aftercare 

strategy. The emission potential is a concept which is a key factor controlling the long-term 

concentrations in landfill leachate and the long-term gas production. It is related to the total amount of 

any pollutant of concern present in the waste body; in this paper, chloride is chosen as the leachate 

component of interest. In modelling long-term emissions, the total mass of solutes and the total volume 

of water in the waste body are treated as deterministic values which are updated with time by a forward 

model (Fellner et al., 2009; Fellner & Brunner, 2010; Laner et al., 2011; Zhang et al., 2021). However, 

the uncertainty in these values is large because it is unfeasible to accurately quantify these using direct 

measurements. Even if an accurate initial value is acquired, the uncertainty will increase during the 

state update because of the errors in input data and forward model. As a consequence, results from 

models simulating long-term emission behavior are also highly uncertain. 

Data assimilation has been widely used in hydrological and geophysical modeling to address 

uncertainties in model states (Jiang et al., 2019; Weerts & El Serafy, 2006) because of its power to 

recursively assimilate new measurements. Particle filtering is one of the data assimilation methods 

that is especially suitable for nonlinear models and errors. In this paper we explore the use of a particle 

filter approach to quantify and possibly constrain the uncertainty in the values controlling emission 

potential. 



2. Approach 

2.1 Sequential data assimilation 

Particle filters assimilate measurements recursively to estimate the unmeasurable states in a 

model. We apply particle filtering to estimate and quantify the uncertainties in emission potential in a 

relatively simple case, focusing only on water volumes and chloride mass in landfill waste bodies. The 

total water volume represents the water content in waste body that is possible to be discharged as 

leachate. 

The idea behind data assimilation is Bayes’ theorem. During the process of state estimation, both 

a model equation and a measurement equation are required (Arulampalam et al., 2002). We take 𝑋𝑡 

to represent the state vector that contains all model states at time step t. Firstly, the state vector will 

be propagated from current time step to next measurement step with model equation. 

   

                                                                  𝑋𝑡 = 𝑀(𝑋𝑡−1) + 𝜀𝑚𝑜𝑑𝑒𝑙                                                            (1) 

where 𝑀(∙) denotes a deterministic model, and 𝜀𝑚𝑜𝑑𝑒𝑙represents model errors caused by different 

sources of uncertainty. The state vector is then connected to the available measurements through the 

measurement equation. 

 

                                                                    𝑌𝑡 = 𝐻(𝑋𝑡) + 𝜀𝑚𝑒𝑎                                                                 (2) 

in which 𝐻(∙) denotes measurement operator that connect model states to measured states, and 𝜀𝑚𝑒𝑎 

represents measurement errors.  

2.2 Model characteristics 

The forward model used to simulate the water balance and chloride transport in this particle filter 

framework is a mass balance travel time distribution model. The landfill is simulated with one cover 

layer and one waste body layer. The states controlling the emission potential are total water volume 

and chloride mass in the waste body. The model is driven by known values of precipitation and 

potential evaporation from the nearest weather station, and the particle filter updates the model states 

using measured time series of discharged leachate volumes and chloride concentrations in the 

discharged leachate. Leachate volumes are measured daily, chloride concentrations are measured 

once every two weeks. The time series is available from June 2012 until the end of 2018. 

 

Figure 1. A schematic overview of model structure. 



    Firstly, the forward model we use is based on a one-way coupling between water volume and 

chloride mass. The leachate production rates only contain information on water volume states, while 

the concentration states depend both on water volume and solute mass.  

Secondly, in the forward TTD model we use, we have explicit time lags between many model states 

and measurements because the travel time distribution considers the time information explicitly. For 

instance, the oldest cell states will only influence the measurements after 5 years. This time lag 

complicates the estimation of multiple hidden states using current measurements. 

In particle filtering approaches, we can estimate hidden states in the model using measurements 

of observable states because the measurements contain some information about hidden states. When 

the model is not assumed to be entirely correct, the model errors will be added to model states during 

the state propagation process. If the errors are only added to observable states in the state vector, the 

diversity of hidden states may disappear with resampling. In other words, adding model errors to 

hidden states gives us the possibility to explore the hidden state space. The hidden states with model 

error will be assessed in the following time steps because it influences the measurable states. 

However, if this influence is weak or does not exist, the hidden states will be updated randomly, and 

the estimation will be poor.  

In the TTD landfill model, the cell states are propagated with time. After P (the number of cells) 

days, there will be a connection among all cells and bulk states. We call this implicit relationship 

'history'. We can estimate hidden states by current measurements if this' history' is maintained. Hence, 

the initialization of particles and the model errors should guarantee this 'history'. The implementation 

strategy is further explained. 

2.3 Implementation 

Initialization: from the model calibration results, we get one parameter set and initial states in 

2003. The initial samples are sampled from Gaussian distributions where the means are selected 

as initial values. Initially, the corresponding standard deviations are set the same as truth 

generation. Subsequently, the standard deviations undergo adjustment to meet the ensemble 

spread criteria. With a warm-up simulation, the samples are propagated to 26th June 2012, a time 

step 7 days earlier than the first measurement date. The reason to perform this warm-up 

propagation is that we want to build connections among waste body states. Otherwise, the time 

lag between bulk states and measurements will make the estimation unreliable.   

Update step: all the particles are propagated to the next assimilation step with the coupled TTD 

model. Considering the time lag issue, if we add independent model error to each state directly, 

the accumulation of errors of states like bulk water content will be huge after several years' lag. 

Therefore, we choose to add daily error to cover layer water content. The daily errors will be 

propagated to waste body states with time, which means we are adding correlated model errors 

to waste body states. Since the influence of error on fast flow cells can be estimated by 

measurements very quickly, we can avoid adding too many unreasonable errors to old states like 

bulk water content. Additionally, this error choice maintains the total mass balance of waste body 

volume states. No model error is introduced to concentration states directly. Once the initial 

concentration values are determined, the concentration variation is assumed to be determined by 

volume states. 

Analysis step: the weights for particles should be calculated. In a coupled assimilation scenario, 

the weights for volume and concentration states are calculated separately by their corresponding 

measurements. Both concentration and leachate volume are considered by overall weights to 



estimate the mass states. 

Resampling step: same as weights calculation, effective ensemble sizes are computed 

respectively in coupled assimilation. Then the corresponding particles will be resampled when 

effective ensemble size is smaller than N/2. The mass states are recalculated by resampled 

volume and concentration states. 

Iteration: the former steps will be repeated until the last assimilation step. 

 

3. Results 

 

Figure 2. Water storage in the waste body. The red line represents the mean estimation of the particle filter. The 

green and yellow lines represent the open loop results and synthetic truth, respectively. The individual particles 

are shown as grey points. The two black arrows point to the wet and dry period during the assimilation process, 

with corresponding probabilities plotted. The black vertical lines in the probability histograms are the truth at 

specific time steps. 



 

Figure 3. The evolution of total chloride mass in waste body over time. 

4. CONCLUSIONS AND OUTLOOK 

This work presents a weakly coupled particle filter framework to assimilate leachate production 

rates and chloride concentrations. A concentration-coupled travel time distribution model was used as 

a forward model for data assimilation. Overall, the results of this study indicate that the proposed 

coupled assimilation procedure can be used to estimate total water storage and chloride mass in the 

waste body. The assimilation of leachate production rates helped improve the accuracy of total water 

content estimation compared to assimilating concentrations solely. The gap between volume states 

and mass states is filled by concentration assimilation. Future studies will focus on quantifying the 

uncertainty caused by model parameters, which, for example, determine baseflow sensitivity. 
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