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Avalanches pose a significant threat to the population and infrastructure of
mountainous regions. The mapping and documentation of avalanches in
Austria is mostly done by experts during field observations and covers usually
only specific localized areas. A comprehensivemapping of avalanches is, however,
crucial for the work of local avalanche commissions as well as avalanche warning
services to assess, e.g., the avalanche danger. Over the past decade, mapping
avalanches from satellite imagery has proven to be a promising and rapid
approach to monitor avalanche activity in specific regions. Several recent
avalanche detection approaches use deep learning-based algorithms to
improve detection rates compared to traditional segmentation algorithms.
Building on the success of these deep learning-based approaches, we present
the first steps to build amodular data pipeline tomap historical avalanche cycles in
Copernicus Sentinel-1 imagery of the Austrian Alps. The Sentinel-1 mission has
provided free all-weather synthetic aperture radar data since 2014, which has
proven suitable for avalanche mapping in a Norwegian test area. In addition, we
present a roadmap for setting up a segmentation algorithm, in which a general
U-Net approach will serve as a baseline and will be compared with the mapping
results of additional algorithms initially applied to autonomous driving. We
propose to train the U-Net using labeled training dataset of avalanche outlines
from Switzerland, Norway and Greenland. Due to the lack of training and
validation data from Austria, we plan to compile the first avalanche archive for
Austria. Meteorological variables, e.g., precipitation or wind, are highly important
for the release of avalanches. In a completely new approach, we will therefore
consider weather station data or outputs of numerical weather models in the
learning-based algorithm to improve the detection performance. The mapping
results in Austria will be complemented with pointwise field measurements of the
MOLISENS platform and the RIEGL VZ-6000 terrestrial laser scanner.
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1 Introduction

Each year around 100 fatalities are related to snow avalanches in the
European Alps (Techel et al., 2016). More specifically, 16 people lose
their lives on average each year over the past 5 years in snow avalanches
in the Austrian Alps (EAWS, European Avalanche Warning Services,
2023). In addition, avalanches cause tremendous financial and
economic damage to infrastructure, buildings, and transportation
networks such as roads and railways (Voumard et al., 2018).
Comprehensive, exact mapping of avalanches builds an important
pillar for avalanche warning and mitigation approaches (Bühler
et al., 2019). Field-based observations are laborious, prone to high
risk and limited visibility during snow fall or fog and interpretational
biases, and are usually not available for less accessible areas (Eckerstorfer
et al., 2017a; Mayer et al., 2020). Avalanche detection based on Earth
observation (EO) satellites can contribute to a far more rapid mapping
than with ground observations or manual mapping. Spaceborne
synthetic aperture radar (SAR) in particular was found to have high
potential for avalanche detection due to frequent high-resolution
images with large swath widths and independence of light and
weather conditions (e.g., Wiesmann et al., 2001; Bühler et al., 2014a;
Eckerstorfer et al., 2017a; Hafner et al., 2021). The avalanche detection
system from the Norwegian Research centre NORCE, introduced by
Eckerstorfer et al. (2019), is currently in pre-operational use by the
Norwegian avalanche warning service (NVE Satskred Norway, 2022).
In the same way, an automated avalanche detection, monitoring and
forecasting tool for Austria based on satellite images could greatly
improve, e.g., the assessment of avalanche risk, avalanche danger levels,
and hazard zoning. Recently, Avian et al. (2020) demonstrated the
usefulness of EO techniques including terrestrial laser scanning and
SAR images for the case of the Pasterze Glacier, located in the Eastern
Austrian Alps. The Austrian Alpine region is covered since 2014 by the
Copernicus SARmission Sentinel-1 with a spatial resolution of 5 × 20 m
(range x azimuth; in Interferometric Wide-Swath Mode) and
6—12 days between acquisitions. This dataset provides an excellent
opportunity to substantially improve our understanding of the
avalanche activity and opens the possibility to develop an
operational tool for avalanche detection and forecasting in Austria.

Analyzing the large amount of available Sentinel-1 images and
operating a near real-time tool, requires an automated detection pipeline
and a well-tested algorithm. Machine learning (ML) and deep learning
(DL)methods applied to remotely sensed data have become increasingly
popular, visible in a strong increase in the number of articles since 2014
(e.g., Zhu et al., 2017). The use of ML and DL has replaced other
approaches in a variety of fields related to cryoshperic and natural hazard
science, e.g., for the study of snow and glacial features (e.g., Haq et al.,
2021b; a), snow cover mapping (e.g., Nijhawan et al., 2019), or to detect
wet and dry snow (e.g., Tsai et al., 2019). Other approaches used ML to
produce avalanche hazard maps that can be used for the prediction of
future avalanche events (e.g., Rahmati et al., 2019) or to model snow
wetness and snowdensity using artificial neural networks (e.g., Haq et al.,
2019). Several scientific studies have demonstrated the potential of
(semi-)automated avalanche detection from SAR (e.g., Vickers et al.,
2016; 2017; Wesselink et al., 2017; Abermann et al., 2019; Eckerstorfer
et al., 2019; Leinss et al., 2020). A major challenge is the validation of the
automatically detected avalanches since ground truth data is sparse. This
caveat is among themain reasons why detection from SAR images is not
yet used to a larger extent.

The main objective of this study is to pave the way to an
automated monitoring system of avalanches for Austria making
use of Copernicus Sentinel-1 SAR imagery. First, this article reviews
the state of the art of manual and (semi-)automated avalanche
detection by taking into account SAR and optical satellite imagery. A
specific focus is set on the currently used ML methods. The
subsequent chapter presents datasets that are used for validation
and training of the ML algorithms, followed by a critical discussion
about obstacles and challenges of avalanche detection from satellite
images. In chapter 5, the setup and roadmap of an automated state-
of-the-art avalanche detection system for Austria is presented
including novel concepts for the detection algorithm, weather
integration, and ground-truth data acquisition. The last chapters
include the discussion and an outlook, as well as conclusions.

2 State of the art: Detection of
avalanches from satellite images

2.1 Manual detection of avalanches

2.1.1 Manual detection from SAR satellite images
The first approach to detect avalanches from SAR images was

undertaken by Wiesmann et al. (2001). The authors used SAR data
from the ESA European Remote Sensing satellites, ERS-1/-
2 Tandem, around a large avalanche event in February 1999 in
Switzerland. They composed RGB composite images by mapping
images from different dates to the three color channels red, green,
and blue. In this way, several avalanche cones with compacted rough
debris were identified due to higher backscatter than the
surrounding homogenous snow cover.

Malnes et al. (2013) used C-band Radarsat-2 images with a
resolution of 3 m to investigate if three avalanches in the county of
Troms in northern Norway were visible in the backscatter images.
To validate the results, high resolution ortho-photos from an
unmanned airborne vehicle (UAV) mounted camera and
photographs taken during helicopter reconnaissance flights right
after the events were used. As a results, two out of three avalanches
could clearly be identified due to a high contrast between the
relatively high backscatter of the avalanche debris in the runout
zone and the low backscatter of the surrounding snow. Eckerstorfer
and Malnes (2015) further improved the detection of avalanches
from Radarsat-2 images. To exclude areas of radar shadow and
layover as possible sources of false interpretation, Eckerstorfer and
Malnes (2015) generated masks and applied them to single
backscatter images. In addition, they applied a mask indicating
avalanche starting and runout zones, with steepness ≥ 30° and slope
inclination ≤ 25°, respectively. Each detected avalanche feature had
to fulfill both of these criteria to be classified as true avalanche debris.
In total, an expert identified 467 avalanches, which then were
validated by another independent expert, but also by comparison
with change detection images, by field observations, and by using
optical remote sensing data from Landsat-8. Based on their results
and their observation of different relative backscatter signal
strengths of dry and wet avalanche debris, Eckerstorfer and
Malnes (2015) suggested an extension of the electromagnetic
radiation model of Ulaby et al. (1987) in dry undisturbed snow
(Figure 1A). In this model Eckerstorfer and Malnes (2015)
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considered backscatter contributions in dry snow avalanches as well
as in undisturbed wet snow and wet avalanche debris
(Figures 1B–D).

Bühler et al. (2014b) used terrestrial laser scanning and
TerraSAR-X stripmap mode satellite images in their feasibility
study for an improved Alpine avalanche forecast service. They
suggested a combined application of SAR imagery and terrestrial
radar interferometry as a promising solution to monitor the
avalanche activity of a certain region.

Eckerstorfer et al. (2017b) manually identified avalanches in
avalanche runout zones that were defined as areas 300 m downslope
from the avalanche starting zones. The authors used Sentinel-1A
imagery covering a 2 year avalanche cycle in Norway for the

detection, and validated the results with avalanches identified in
high resolution Radarsat-2 images.

2.1.2 Manual detection from optical satellite
images

Lato et al. (2012) first manually detected avalanches in order
to validate their segmentation and classification methodologies
to identify recent snow avalanche deposits within very high
resolution (VHR) panchromatic optical remote sensing
imagery. One of the drawbacks of avalanche detection in
optical images is that experts are not able to manually
digitize avalanches located in regions in the shade (Lato
et al., 2012).

FIGURE 1
(A) Dry snow: The total backscatter (σT) is controlled by the backscatter from the ground (σg). (B) Dry avalanche debris: increased σT is produced by
increased volume backscatter σv and σgv and increased backscatter at the air-snow surface interface σas, which are related to greater snow depths and a
higher surface roughness, respectively. (C) Wet snow: the electromagnetic wave is assumed to barely penetrate into the snow volume. Therefore, σT is
predominantly composed of σas. It is, however, lower than in dry snow. (D) Wet avalanche debris: The surface roughness of the avalanche debris
increases the strength of σT compared to undisturbed wet snow. Reproduced with permission from Eckerstorfer and Malnes (2015).
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The largest and freely available dataset of avalanche outlines to
date was mapped by Bühler et al. (2019) and Hafner et al. (2021).
The dataset from January 2018 covers an area of around 12,500 km2

in the Swiss and Liechtenstein Alps. A total of 18,737 individual
avalanche outlines were manually mapped, of which 33% could be
identified with their exact outline. The authors tested satellite
imagery from several high-resolution optical (WorldView-4,
Pleiades, Spot6/7) and a SAR (TerraSAR-X) sensor. The SPOT6/
7 ultimately proved to be their choice of data due to their very large
coverage compared to the other optical sensor data. The rather
complex preprocessing of the TerraSAR-X data did not allow for a
rapid avalanche mapping. The validation of the manually mapped
avalanches with photographs from helicopter overflights of parts of
the covered area revealed an accuracy of 73%.

2.2 Automated detection of avalanches

2.2.1 Automated detection of avalanches from
optical images

Manual detection of avalanches in satellite images is still
considered as the method to obtain the most complete collection
of avalanche records compared to automated detection (e.g., Lato
et al., 2012; Bianchi et al., 2021). Compared to automated detection,
manual detection however is very time consuming and may often be
subjective. Hafner et al. (2022) conducted a study on the inter-
observer variability by comparing expert agreement on manual
avalanche mapping in SPOT6/7 optical data. They found that the
expert agreement is considerably lower than expected.

One of the first successful attempts to apply algorithms for
the detection and the mapping of avalanches in optical satellite
data was achieved by Larsen et al. (2010). They tested two
different texture segmentation algorithms for the classification
of avalanches in the images: 1) a texture based segmentation
using gray-level co-occurrence matrices and 2) a segmentation
based on directional filters (Larsen et al., 2010, and references
therein). The segmentation procedures were followed by
extraction of shapes and context features from the detected
objects and an object based classification thereof. As input
several Quickbird images from the Hellesylt area in central
Norway were acquired with a resolution of 0.6 m in the
panchromatic band and 2.4 m in the multispectral bands.
Results of the segmentation show that using gray-level co-
occurrence matrices extracts avalanches slightly more
effectively than the directional filter approach.

In their work, Nolting et al. (2018) utilized a combination of
regional scale statistical mapping of avalanche prone areas together
with the detection of avalanches in optical satellite data from South
Tirol, Italy. First, they statistically mapped zones that were prone to
avalanche release by using the Generalized Additive Model (GAM),
which lead to an avalanche release likelihood model. This static
model was then used as input for a random walk process path model
to determine potential avalanche paths and deposits. Second, optical
remote sensing imagery of Sentinel-2 was used to detect avalanches
with a change detection approach in which images before and after
the known avalanche event were processed. In a third step, the first
and second approach were combined. As a result, the combination
of the two approaches improved the avalanche detection based on

change detection by reducing false alarms. A major challenge was
the detection in zones within shadowed areas of the optical images.

In the recent study of Hafner et al. (2022) an adapted
DeepLabV3+, a state-of-the-art DL model, was applied to
automatically detect and map avalanches in SPOT 6/7 satellite
images from January 2018 and January 2019, which makes it the
first attempt to apply a DL model to optical satellite data. For
training, validation and testing of the model, a dataset comprising
24,778 manually annotated avalanche polygons was used. Their DL
model is able to adapt to the underlying terrain model through
deformable convolutions that adapt their receptive field size
according to the input data. They were able to map 66% of the
total number of avalanches from the training dataset. When areas in
the shade were excluded from training, they could show that in
illuminated terrain both training and test results improve.

2.2.2 Automated detection of avalanches from SAR
images

One of the first attempts to automatically detect avalanches in
change detection SAR images was undertaken by Hamar et al.
(2017). In their approach they first mapped potential avalanches
and then used supervised classification with a random forest
classifier in Radarsat-2 images.

Vickers et al. (2016, 2017) developed an automated avalanche
debris detection algorithm for Sentinel-1 imagery that utilizes
change detection, k-means classification, and unsupervised object
classification methods. The automated avalanche detection algorithm
was tested in a region in northern Norway and was compared with
manually identified avalanche debris and field-based images to quantify
the algorithm accuracy. A correct detection rate of over 60%
(i.e., accuracy of the detection processor) could be achieved.

Eckerstorfer et al. (2019) further developed the change detection
algorithm from Vickers et al. (2016, 2017) to a near-real time
avalanche monitoring system for Sentinel-1 SAR data. This
system detects avalanche polygons fully automatically within
roughly 10 min after Sentinel-1 data are downloaded. The
avalanche detection algorithm achieved a probability of detection
of 67% on average with a false alarm rate of 46%. Eckerstorfer et al.
(2019) processed 5 years of Sentinel-1 images acquired over a 150 ×
100 km large area in Northern Norway. In total, 77% of all
avalanches were detected manually in the SAR images when
compared to a dataset of avalanches observed in the field. The
automated avalanche detection algorithm resulted in an accuracy of
79% compared to these manual detections.

According to Kummervold et al. (2018), avalanche detection
algorithms based on automatic signal processing of SAR images
have the potential to achieve accuracies of roughly 80%. However,
in complex cases, e.g., snow turning from wet to dry, manual
interpretations are still surpassing automatic signal processing
methods. With the attempt to outperform these methods,
Kummervold et al. (2018) therefore applied two convolutional
neural networks, VGG-19 and AConvNets, for detecting avalanches
in SAR images. Convolutional networks (CNNs) are known for their
particular strength in image processing tasks, since they allow a very
general learning approach where each layer recognizes refined
structures of an image (LeCun et al., 2015). Kummervold et al.
(2018) showed that these CNNs were able to produce consistently
accuracies around 90%. Conventional signal processing algorithms
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seem to fail for images that are easily categorized by experts, the CNNs
show problems with images that are also considered ambiguous for
experts. In order to further improve the detection accuracy,
Kummervold et al. (2018) suggest to include information on
backscatter and slope angles from neighboring image slices.

In their study, Waldeland et al. (2018) also used CNNs based on
change detection in SAR images from multiple passes over the same
area. The proposed methodology applies an existing pre-trained
network that has been trained for classification of 1,000 different
objects (not avalanches) in RGB images. Since SAR images are non-
standard images, Waldeland et al. (2018) proposed a method for
adjusting SAR images in such a way that they can be used in pre-
trained networks for RGB images. The pre-trained network is then
fine-tuned to the task of distinguishing avalanches from lookalikes
in the candidate regions from the SAR images. Using cross-
validation, Waldeland et al. (2018) achieved an average
classification error rate of 3.5%.

Bianchi et al. (2021) developed a DL architecture of a fully
convolutional U-Net for detecting avalanches in Sentinel-1 radar
images. In contrast to the previous use of CNNs, the U-Net performs
a segmentation. That is, each pixel is classified as avalanche or not.
The U-Net design, first introduced by Ronneberger et al. (2015) in
biomedical image segmentation, comprises an encoder and a
decoder structure. According to the concept of CNNs, the
encoder extracts feature maps in a hierarchical manner that show
certain patterns of interest in the image. The deeper layers catch
patterns that are more complex and have a larger spatial range. The
feature maps are then gradually converted by the decoder into
binary segmentation masks (avalanche or no avalanche). In order
to improve generalization, certain information can also bypass
directly between the encoding and decoding layers, preserving
the spatial information by pixel-by-pixel semantic alignment with
intermediate representations. Bianchi et al. (2021) trained a neural
network on 6,345 manually labeled avalanches from 117 Sentinel-1
images. When tested on a new synthetic aperture radar image, they
achieved an F1 score above 66%, compared to manual labeling.

3 Data for training and validation

3.1 Pre-detected avalanche outlines from
satellite images

Pre-detected avalanche outlines are usually obtained through
manually annotating satellite images by an expert. For the ML
detection algorithms outline datasets are usually split up in
training, validation, and test datasets. Datasets from Switzerland
(Hafner and Bühler, 2019; 2021), Greenland (Abermann et al.,
2019), and Norway (Bianchi et al., 2021) are freely available and
discussed in more detail here.

3.1.1 Switzerland
The largest currently available dataset contains 18,737 avalanche

outlines from a period of a large avalanche cycle in January 2018 that
covers the majority of the Swiss Alps (12,500 km2; Bühler et al., 2019;
Hafner and Bühler, 2019). A second dataset from Switzerland covers
an area of approximately 180 km2 around Davos and comprises an
avalanche cycle a year later, in January 2019, with around

6,000 avalanches (Bühler et al., 2019; Hafner and Bühler, 2021;
Hafner et al., 2021). Bühler et al. (2019) and Hafner and Bühler
(2019) initially tested different satellite sensors that were suitable for
rapid mapping during a first avalanche period. Optical satellite data
from SPOT6/7 proved to be most useful for this task. The avalanche
outlines were manually mapped after applying image enhancement
techniques to analyze regions in cast shadow as well as brightly
illuminated areas. For the second dataset, Hafner et al. (2021) used
in addition mapped avalanches from an existing database, the Davos
Avalanche Mapping Project (DAvalMap) for comparison and
validation. Furthermore, ground truth data was compiled from
ground-based and helicopter photographs.

3.1.2 Greenland
For the example of Greenland, a wet-snow and slushflow

avalanche event during April 2016 was studied in detail by
Abermann et al. (2019). This event is special in a sense that it
was in a largely unpopulated region and did not do any
infrastructural harm despite its dimension (around 800 individual
avalanches). It would most likely have remained unobserved and
undescribed had it not also occurred in a location where
interdisciplinary long-term ecosystem monitoring is performed.
This coincidence gave the chance to perform ground-truthing
on-site but also automated time-lapse imagery and to test semi-
automated methods of avalanche detection based on SAR data in
Greenland. Furthermore, the good coverage of meteorological data
allowed for assessing the likely triggering factors, which are in that
specific case likely a very rapidly occurring temperature rise together
with a thin snow cover that allowed for quick ripening and wetting of
the entire snow pack.

3.1.3 Norway
Numerous studies have been conducted in Norway utilizing

different datasets. The largest published dataset of annotated
SAR observations of avalanches in Norway, is described in
Bianchi et al. (2021). It comprises 118 Sentinel-1 scenes
acquired over Northern Norway during the period from
October 2014 to April 2017. The dataset is annotated by an
avalanche specialist, with a total of 6,345 avalanche outlines. The
dataset is particularly favorable due to its wide coverage of area
and multiple seasons, including a broad range of meteorological
and snow conditions. However, it should be noted that the
annotation is based on SAR data alone, which may exhibit
inherent observational biases, such as reduced sensitivity to
dry and low-density avalanche debris (Eckerstorfer et al., 2022).

4 Obstacles and challenges of
avalanche detection

Both optical and SAR satellite data have intrinsic benefits and
drawbacks. One of the major advantages of SAR satellites is the
ability to acquire useful data regardless of cloud cover and daylight,
whereas optical satellites require clear sky and Sun light. However,
SAR data need a more complex preprocessing than optical data.
Sentinel-1’s temporal resolution regarding its revisit time ranges
from daily in northern Norway to approximately every 6 days in
central Europe (e.g., in Austria) until 23 December 2021, when both
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Sentinel-1 satellites were still acquiring data. Thereafter the temporal
resolution is about half, as Sentinel-1B’s mission has ended. In this
context it has to be noted that the SAR image used for the detection
should be from a date as early as possible after the avalanche release.
Melting snow, wind redistribution of snow and fresh avalanches on
top of the initial avalanche may impede a correct avalanche
detection (e.g., Eckerstorfer and Malnes, 2015). On the contrary,
temporal resolution of optical satellite data that is currently
recognized as adequate for avalanche mapping, such as from
SPOT6/7, require special tasking and are hence only accessible at
specified times of the year (Hafner et al., 2022).

Another important factor that influences the detection of
avalanches is the spatial resolution of the sensor. Eckerstorfer
and Malnes (2015) noticed differences in mapped outlines in
Radarsat-2 and optical Landsat-8 images with 3 m and 15 m
resolution, respectively. A comparison of manual identification of
avalanches in Sentinel-1A and in very high-resolution Radarsat-2
images shows a general underestimation of avalanche activity in the
Sentinel-1A data (e.g., Eckerstorfer et al., 2017b). Also Hafner et al.
(2022) noted that most avalanches smaller than size 3 were
overlooked in Sentinel-1 images due to the limited spatial resolution.

A major difference between SAR and optical images is that the
track and release area of avalanche deposits detected using SAR
images remain unknown. In optical images, e.g., in SPOT6/7,
avalanches can be identified from release to deposit zone (e.g.,
Hafner et al., 2022). Both SAR and optical images have certain
areas in which avalanche detection is more difficult. A comparison
of avalanches detected in radar and SPOT-6 optical imagery showed
that most of the undetected avalanches in the optical imagery lied in
cast shadows (Bühler et al., 2019; Leinss et al., 2020; Hafner et al.,
2022, e.g.). Similarly, radar shadow and overlays effects inhibit the
detection of avalanches in SAR images, although areas affected by
layover effects can potentially be used for avalanche detection
(Eckerstorfer et al., 2017b).

One of the major challenges for the avalanche detection in SAR
images is that it is much less reliable in detecting dry avalanches than
wet avalanches (e.g., Hafner et al., 2021; Eckerstorfer et al., 2022).
The low visibility is related to the low relative backscatter intensity of
dry (slab) avalanche debris compared to its surroundings, as well as
small differences in change detection images (Figure 1).

Despite these shortcomings, the performance of avalanche
detection has improved substantially over the last years due to
improved algorithms, e.g., CNNs, large training datasets, e.g.,
from Hafner et al. (2021), or through enhanced image
processing, e.g., local resolution weighting (LRW; e.g., Tompkin
and Leinss, 2021). Steep mountainous terrain together with the slant

view geometry of the SAR sensor makes detection more difficult
(Tompkin and Leinss, 2021). On the one hand, avalanche brightness
depends on the incidence angle and on the other hand, radar shadow
and layover limit the observable areas. Similarly, the spatial
resolution is highly dependent on the incidence angle with
respect to the terrain. Therefore, Tompkin and Leinss (2021)
applied LRW to the backscatter images from ascending and
descending orbits of Sentinel 1 to increase the brightness of the
avalanche and improve the image coverage and resolution. Due to
these new approaches and the access to freely available satellite data,
the automated detection of avalanches is considered as most
promising for operational use.

5 State of the art: Automated avalanche
detection in Austria

5.1 Available relevant data sources in Austria

5.1.1 SAR data from Austria
We obtained Copernicus Sentinel-1 SAR data that cover the

time range and geographic regions of the training data and our test
area (Table 1). The conventional approach for avalanche monitoring
from SAR, is based on change detection between image pairs
acquired at the same relative orbit (Vickers et al., 2017;
Eckerstorfer et al., 2019). Typically, this is done in a geographic
coordinate system of choice, thus the SAR data is geocoded prior to
change detection. Specifically, the images are subject to the following
pre-processing steps: 1) merging of adjacent products to a common
radar geometry, 2) radiometric calibration, 3) speckle filtering, 4)
radiometric transformation from linear to decibel scale, and 5)
geocoding to a geographic grid, using a digital elevation model
(DEM). All images have vertical-vertical (VV) and vertical-
horizontal (VH) polarization bands.

Geocoded images acquired at the same relative orbit are then
paired and fed to a change detection algorithm. For a single Sentinel-
1 satellite, the typical time separation between an image pair is
12 days, while for a two satellite constellation, it is 6 days. Due to
geometric effects, specifically radar shadowing and layover, not all
areas are observable or correctly represented by the satellites. A
detailed satellite coverage map over Austria, showing the number of
relative orbits that can observe a specific area is shown in Figure 2.

5.1.2 Data for training and validation from Austria
Besides the avalanche outline data from Switzerland (Hafner

and Bühler, 2019; Hafner and Bühler, 2021), Greenland (Abermann

TABLE 1 SAR images that cover the time range and area of the training data as well as additional images that cover Austria. “Nr.” indicates the number of images,
minimum and maximum longitudes and latitudes, lonmin, latmin, lonmax, and latmax, indicate the maximum area covered by the SAR images, and “CRS” is the
coordinate reference system with its corresponding UTM zone.

SAR dataset Time range Nr lonmin, latmin, lonmax, latmax CRS

Switzerland 18—29 Jan. 2018 14 6.7, 45.8, 10.5, 47.2 EPSG:32,632, 32N

Switzerland 10—20 Jan. 2019 12 8.0, 46.5, 10.5, 47.3 EPSG:32,622, 32N

Greenland 25 Mar.—27 Apr. 2016 17 −52.2, 62.8, −49.0, 65.1 EPSG:32,622, 22N

Austria 01 Jan.—29 Feb. 2016 51 9.3, 46.1, 17.4, 49.3 EPSG:32,622, 32N
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et al., 2019) and Norway (Bianchi et al., 2021) that were discussed
above, training and validation data from Austria are necessary for a
reliable detection and monitoring system for Austria. Currently, no
comprehensive avalanche outline dataset is available from Austria.
However, some tests have been made to determine the feasibility of
delineating avalanche outlines in Sentinel-2 images, but are
currently still ongoing.

A collection of recent avalanche incidents that may be used
to a certain extent for validation of the detection results is the
Avalanche Warning Service Information System (LAWIS,
2023) database. It contains avalanche incidents that are
accessible for a year, as well as weather station data and
snow profiles. LAWIS is a public and transnational portal
for the dissemination of avalanche information. It is
currently jointly coordinated by the University of Vienna
and supported by seven Austrian avalanche warning
services. In addition, the avalanche warning service (LWD)
Tirol provided us with a collection of avalanche incidents
covering the period from 2014—2023 that contains, e.g.,
information on the (point) location, the date, type and size
of avalanches as well as photographs of some of the avalanches.
These two data collections will initially serve as validation
dataset for automatic avalanche detection in Austria.

These avalanches datasets will serve as basis for an Austrian
avalanche outline inventory that can serve as reference dataset for
ML detection algorithms. Additional records of avalanches will be
obtained with the MOLISENS lidar and radar platform, discussed in
more detail below. The MOLISENS platform has proven to be

promising for several applications and may be a good candidate
for a local avalanche monitoring system.

5.2 Concept of the data pipeline for
detecting avalanches

Processing remote sensing data with ML algorithms is
challenging and usually requires a large number of tools and
parameters applied to dynamically changing data. Thus the
general need for automated ML pipelines that can handle
complex data arose in the field, although at least in research
environments manually assembled and scripted workflows often
still prevail. One of the drawbacks of such a manual approach is that
it is typically not reusable, lacks parameter tracking and
documentation, requires manual installation and is not ready for
production and cloud deployment (Leipzig, 2017; Wratten et al.,
2021). A variety of workflow managers for automated ML pipelines
emerged during the recent advancement of data science and data
engineering and are deployed in data-heavy branches of science like
bioinformatics (e.g., Leipzig, 2017; Ahmed et al., 2021;Wratten et al.,
2021). In the equally data-heavy field of satellite remote sensing
cloud EO platforms like Google Earth Engine or Microsoft Planetary
Computer (Gomes et al., 2020) are popular, but their main focus is
data provision and not workflow management.

Currently there are over 320 data science workflow managers
available and the number is still increasing (Amstutz et al., 2022).
The capabilities of such managers range from graphical workflow

FIGURE 2
Map showing the satellite coverage of Austria by the Sentinel-1 satellites, quantified as the number of satellite geometries (relative orbits) fromwhich
an area of interest is visible. The coverage is limited by the swath width of the radar, as well as radar layover and shadowing due to the topography. Since
the radar is side looking and the orbits are oriented roughly north-south, radar layover and shadowing effects aremost severe in terrain with steep easterly
or westerly slopes. However, only very few areas are not covered at all (indicated in black). Created with Drawio.
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management over web based services to highly specialized tools and
low level libraries. In our work we chose Kedro (Alam et al., 2022),
since it is a code-first open-source Python framework with a large
community and active development. It includes data versioning,
pipeline slicing, parallel execution and experiment tracking for ML
model optimization. In addition, the finished project code can easily
be converted to other frameworks like Apache Airflow. Hence, the
complete pipeline can be deployed on cloud services and scaled for
regions beyond Austria and the Alps. Since the development
environment and project requirements vary widely, we apply
GitHub actions to build a Docker (Merkel, 2014) image, which
can be used on laptops for local development as well as on GPU
servers and cloud providers. Docker uses virtualization to deliver a
software application and its dependencies in so-called virtual
containers that can run on any Linux, Windows, or macOS

computer. Our Docker images are based on official Nvidia
images and are automatically rebuild on code changes.

Figure 3 shows an overview of our data pipeline. Coloured
blocks are sub-pipelines with many individual parts. These sub-
pipelines can easily be reused, e.g., when the programming code
should run with different data sources and processing steps. Each
sub-pipeline contributes to one or more layers in the master dataset.
Everything is organized by one set of parameters, which includes the
data catalog. In this way, the whole process, including the
programming code, data and ML parameters, is version
controlled and completely reproducible, together with the
development environment in the Docker image.

All input data are adapted to the resolution and coordinate
reference system (CRS) of the SAR data in a way that the data are
mapped exactly to the pixels of the SAR image.

FIGURE 3
High level overview of the data pipeline, controlled by a set of parameters and orchestrated by Kedro. “DEM” stands for digital elevation model.
Where the ML algorithms are implemented in PyTorch with TorchGeo (Stewart et al., 2022).
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5.3 Concepts of the detection algorithms

As a test case, we applied the existing detection algorithm of
Eckerstorfer et al. (2019) to Sentinel-1 SAR images of western
Austria after a high activity avalanche period on 6 February

2016 as a preliminary proof of concept (Figure 4). Different
colors represent changes in backscatter: green indicates increase
of backscatter due to, e.g., avalanches; pink indicates a decrease of
backscatter due to, e.g., wet snow; gray indicates no change of
backscatter; white parts are undefined areas due to radar shadow

FIGURE 4
Automated avalanche detection from a SAR image of an area in western Austria (inset) with the algorithm from Eckerstorfer et al. (2019). The
algorithm produces a RGB change detection image of two Sentinel-1 SAR images of January 28 and 9 February 2016, therefore depicting avalanche
activity between these dates. An expertmarked green areas with yellow outlines when theywere interpreted as avalanche. The original imageswere taken
in interferometric wide swath mode with a resolution of 10 × 10 m, in descending geometry and with vertical-vertical (VV) polarization. Coordinates
are projected in EPSG:32633 - WGS 84/UTM zone 33N. Created with NORCE SAR preprocessing pipeline, QGIS 3.24, Python 3.8, Inkscape 1.2, and
Gimp-2.10.

FIGURE 5
Overview of the architecture of the detection algorithm. The innovative parts are the inclusion of encoded weather data and a new segmentation
network where CRF stands for conditional random field, CNN for convolutional neural network and U-net is a special CNN architecture.

Frontiers in Remote Sensing frontiersin.org09

Kapper et al. 10.3389/frsen.2023.1156519

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2023.1156519


and layover. Several green areas that are interpreted as avalanches by
M. Eckerstorfer are indicated with yellow polygons.

In a first approach to set up the avalanche detection system,
we plan to implement the state-of-the-art algorithm of Bianchi
et al. (2021) as a baseline and apply it to the Alps with a focus on
Switzerland where validation data is available from Hafner and
Bühler (2019, 2021, Figure 5). These results will serve as baseline
on which to approve upon. In addition, we aim to compare the
performance of the algorithm applied to parts of the Alps,
Norway, and Greenland to investigate up to which degree the
F1 score of 66% published by Bianchi et al. (2021) might differ in
a region other than Norway. At the core of the DL image
classification algorithm of Bianchi et al. (2021) is a U-Net
architecture, which has provided convincing results in
Norway. As input to the detection network, Bianchi et al.
(2021) use a) the co- and cross-polarized components of the
activity and reference SAR image pairs, VV and VH respectively,
which are rescaled to [0,1], b) a combination of VV and VH
(VVVH = VV2*VH2), as well as topographic information in the
form of c) the slope angle and d) the potential angle of reach
(PAR). The slope angle of the terrain, calculated by taking the
gradient of a DEM, is an important factor for the release of
avalanches and plays a significant role in determining where they
may occur. The PAR shows the relationship between the distance
an avalanche travels from the point where it was triggered, and
the slope it slides down. We follow the approach of Bianchi et al.
(2021) and make use of the existing SAR pre-processing chain
provided by NORCE, which is optimized for avalanche detection
in mountainous regions. For the training of the detection
algorithm we will use datasets from Switzerland (Hafner and
Bühler, 2019; 2021), Greenland (Abermann et al., 2019), and
Norway that are either publicly available or provided by the
respective owner. The avalanche outline datasets will be split

into, e.g., 80% for training, 10% for validation of the detection
results, and 10% for testing of the model.

In order to improve the detection performance of the
baseline approach, we will include encoded weather history
data as additional input to the detection algorithm, which will
be explained in more detail below (Figures 5, 6). In a second
approach we will investigate the possibility of using a spatio-
temporal conditional random field (CRF) for the segmentation
network that could ensure both, spatially and temporally
consistent segmentations. This method will be compared to
the baseline model as well as its variation with the included
weather history and will be adapted to improve the performance.
Further architectures, e.g., the U-Net++ (Zhou et al., 2018) may
be taken under consideration to find the best possible detection
architecture for our purpose.

The architecture shown in Figure 5 that we have set up makes
it possible to test different segmentation networks and encoded
weather data configurations, which we will be used to find the
best combination. Additionally, we will investigate solutions for
model interpretability and verification, based on open-source
solutions like Captum (Captum, 2023). Such methods enable end
users to trust and understand the DL results, which is necessary
to increase the trust of the avalanche warning providers in the
system.

Our detection system shall fulfill the following requirements: 1)
Improve the F1 score compared to the baseline model by Bianchi
et al. (2021) in the Alps; 2) automatic avalanche detection for a
region of 10 × 10 km shall take less than 1 h computation time; 3) the
algorithm shall work reliably on SAR images acquired 6 days apart.
Furthermore, true positives (correct detection), false negatives
(missed avalanches), and false positives (false avalanche
detection) will be calculated for comparison with the results of
Bianchi et al. (2021).

FIGURE 6
Overview of the steps to encode weather history for the use in the segmentation network.
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In addition, we apply the detection algorithm to SAR images of
the Austrian Alps, assuming that the F1 score is not significantly
different from the Swiss Alps. Using Austrian avalanche data
provided by LWD Tirol, we plan to set up an avalanche outline
dataset that can be used as a starting point for training and
validating the detection algorithm applied to SAR data in the
Austrian Alps.

5.4 Concept for the weather integration

Only a few studies put avalanche detection in SAR images into
context with meteorological data (e.g., Coléou et al., 2018;
Wendleder et al., 2021). Their findings show the potential and
caveats of adding information such as precipitation, wind speed
or snow depth into the detection algorithms. However,
meteorological information together with SAR avalanche
detection has not yet been included into a CNN algorithm yet.
We therefore plan to test how the ERA5 reanalysis datasets from the
ECMWF (Hersbach et al., 2020), the high-resolution INCA (Haiden
et al., 2011), and SNOWGRID (Olefs et al., 2013; 2020) nowcasts
from GeoSphere Austria can improve the performance of the CNN
algorithm.

Figure 6 shows the steps involved to encode gridded weather
data for input into the detection algorithm. In a first step the raw
data is downloaded as gridded data with several time steps and
multiple values per grid point. In the second step the weather data is
downscaled statistically or dynamically onto the locations of the
pixels of the SAR image, for example, with the Python package
Scikit-downscale (Hamman and Kent, 2021). Then the weather data
is aggregated over time, which produces one grid of values. This
aggregation function can be averaging or it can be a snowpack
model, depending on the type of weather parameters and the desired
complexity. The aggregation function produces then a tensor of size
n × m × 1 which feeds into the detection algorithm from Figure 5.

5.5 Concept for in-situ ground truth data

The technology guide for monitoring of gravitational natural
hazards by GEOPREVENT AG (2022) summarizes and compares
sensors and methods currently used for avalanche detection.
According to the technology guide, currently used sensors and
methods are ground-based avalanche radars, geophones, trigger
lines, infrasonic sensors, and snow height measurements.
WYSSEN Avalanche Control AG (Wyssen, 2023) and
GEOPREVENT are two examples of companies that developed
radars for avalanche detection of both, spontaneous and triggered
avalanches. Aerial photographs taken during reconnaissance flights
with helicopters and UAVs are often a useful addition to gain a
better image of the avalanche activity.

Since more than 15 years, terrestrial laser scanning has widely
been used for high resolution snow depth mapping in centimeter
accuracy (Prokop, 2008; 2009; Deems et al., 2013). From the
beginning the users of the technique were attracted to investigate
the conditions in avalanche starting and avalanche run out zones to
cover different properties of snow pack and avalanche dynamics
(Prokop et al., 2015; Prokop and Procter, 2017). With the

development of very long range laser scanners (e.g., RIEGL VZ-
6000) that allow scanning of snow surfaces with a suitable laser
wavelength of 1,064 nm along ranges of up to 6 km, the method
started to interest also avalanche forecasters (Deems et al., 2015;
Hancock et al., 2018) and other snow mapping techniques such as
structure from motion (SFM) photogrammetry and snow
distribution modeling approaches were validated (Bernard et al.,
2017; Schön et al., 2018). Accordingly we use different laser scanning
devices to measure spatial snow depth distributions and to validate
our satellite borne data. Comprehensive reference data of local
avalanche releases is indispensable to validate and improve
algorithms for avalanche detection in satellite images and to
monitor locations with high-risk potential. Also for this work
qualitative ground truth measurements of individual slopes for
benchmarking the avalanche detection algorithm is essential. For
that purpose, we will collect ground truth data by using the RIEGL
VZ-6000 as a conventional terrestrial laser scanner (TLS), as
described above. Additionally, the potential of state-of-the-art
automotive lidars and radars to substitute the expensive classical
TLS is currently being investigated.

5.5.1 The MOLISENS platform
Current lidar and radar systems for avalanche detection, e.g., as

offered by WYSSEN (Wyssen, 2023), are too expensive for country
wide applications. Developing new, reliable, and inexpensive
measurement and monitoring techniques for avalanches requires
emerging cutting-edge technology. These tools, originally developed
for high-resolution environment perception in automated vehicles,
enable exciting new measurement and monitoring methods for
snow height and avalanche detection and quantification, while
being robust and cost efficient. Because of the limitations of a
TLS, a mobile data logger called MOLISENS (MObile LIdar
SENsor System), was developed by the Virtual Vehicle Research
GmbH and the University of Graz. The system was used to collect
Global Navigation Satellite System (GNSS), inertial measurement
unit (IMU), and automotive lidar data as described in Goelles et al.
(2022). Currently, MOLISENS is extended (MOLISENS_ext;
Figure 7) with additional connectivity options to also encompass
data from automotive radar sensors and Lufft weather stations. The
latter are able to measure temperature, air pressure, humidity, wind,
and precipitation. The system enables the use of the mentioned
sensors in remote areas as it is relatively small, lightweight, and
battery powered. Successful measurement campaigns were
completed, e.g., in a glacier cave in Svalbard and in a stalactite
cave in Austria (Goelles et al., 2022).

In the future, MOLISENS_ext should allow us to detect and
quantify avalanches within a radius of about 400 m, with a spatial
resolution of a few cm, and a temporal resolution of 10–20 Hz. We
plan to install this setup on individual slopes in order to monitor
snow height and the spatial extend of avalanches. For that purpose,
lidar, radar and weather data will be collected before, during, and
after avalanche blastings. The collected data are then used for
benchmarking and validating the automated avalanche detection
based on satellite data and ML algorithms for selected slopes.

TLSs like the RIEGL VZ-6000, which have been used for ground
truth acquisition in the past, have various advantages compared to
automotive lidar sensors, e.g., higher accuracy, precision, and a
higher number of targets per pulse. However, they also come with
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challenges and limitations compared to available automotive lidar
sensors. In Table 2, a comparison between the RIEGL VZ-6000 and
two lidars, the OS1-64 and the OS2-64, by Ouster, one of the leading
manufacturers, is given. The RIEGL VZ-6000 comes with the clear
advantage of a very high spatial resolution as well as a much greater
range. On the other hand they are comparably heavy and have a
larger form factor compared to the automotive lidars. Furthermore,
TLS have a higher power dissipation compared to automotive lidar
sensors. The temperature limitation of the VZ-6000 without
insulation is 0 °C during operation. The OS1-64 allows much
lower operating temperatures down to −40 °C. The advantages of
the automotive lidars for ground truth data acquisition is their small
size, high temporal resolution and low eye safety class. A
significantly lower price of automotive lidar sensors compared to

conventional TLS would allow to install them with higher spatial
density, e.g., on multiple slopes of a ski resorts.

A serious drawback for lidar in general and automotive lidar in
particular is the range degradation under adverse weather.
Automotive radar sensors have a similar range but are much less
affected by adverse weather conditions (Muckenhuber et al., 2021).
Therefore, automotive radar will be tested in this context to assess
their potential to detect avalanches compared to classical avalanche
radars. They have a significantly shorter range than avalanche
radars, but their scalability due to lower costs, smaller size and
lower power output could overcompensate for that. Modern
automotive and traffic monitoring radar sensors typically operate
at 24 GHz (e.g., Smartmicro TRUGRD Stream) or 77 GHz (e.g.,
Continental ARS540), have a range of up to 300 m, and apply

FIGURE 7
In this figure the hardware setup of the MOLISENS_ext system is shown. It is equipped with a GNSS receiver, an IMU, a lidar sensor, a radar sensor,
and a weather station.

TABLE 2 Comparison between the RIEGL VZ-6000 (RIEGL Laser Measurement Systems GmbH, 2020) as a conventional TLS and the Ouster lidar OS1 (Ouster Inc.,
2022a) and OS2 (Ouster Inc., 2022b) as automotive lidars. The form factors and weights are given without batteries, case, and tripod.

RIEGL VZ-6000 Ouster OS1 Ouster OS2

Range (m) 6,000 200 400

Accuracy (mm) 15 30–100 30–100

Precision (mm) 10 7–50 25–80

Targets per pulse 9–15 2 2

Vertical field of view (°) 60 45 22.5

Height (cm) 45 5.8 10.3

Diameter (cm) 24.8 4.5 6.0

Weight (kg) 14.5 0.5 1.1

Power dissipation W) 75 14–20 18–24

Operating temperature (°C) 0 to +40 −40 to +60 −20 to +60

Laser class 3B 1 1

Costs (€) approx. 150,000 approx. 10,000 approx. 10,000
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frequency-modulated continuous wave (FMCW) technologies for
relative distance and velocity estimation and digital beam forming to
control the direction of the emitted wave (Marti et al., 2019). In
addition to data on object level (i.e., list of detected road
participants), radar data is typically also provided as radar
clusters. Clusters represent radar detections with information like
position, velocity, and signal strength. This raw data format allows
us to develop and apply new algorithms for detecting changes in the
backscatter behavior of the environment caused by avalanches.

To summarize, if deployed in a distributed manner, the
advantages of automotive sensors over classical systems, will
make it possible to collect ground truth data of a large number
of avalanche zones with high temporal resolution. Building on our
experience with MOLISENS, we will develop a strategy for its
operational use in local avalanche monitoring in Austria. For
lidar and radar point cloud processing, we will use the Python
package “pointcloudset” described in Goelles et al. (2021) which
supports analyzing large datasets consisting of point clouds recorded
over time. For validating the proposed system, we plan to collect data
with the RIEGL VZ-6000.

6 Discussion and outlook

We plan to set up the first fully automated avalanche detection
system for Austria based on Sentinel-1 SAR images. We will include
weather reanalysis data into the data pipeline to improve the
detection performance. In addition, we will further develop the
MOLISENS platform, which incorporates automotive radar and
lidar sensors, to acquire local (individual slopes) ground truth
data in an automated, cost-efficient, and scalable way. In the
future, these complementary measurements shall be able to
constantly assess and validate the performance of the SAR-based
regional detection algorithm in the Austrian Alps.

Our goal is to facilitate the application of the data pipeline, including
the ML algorithm as well as the newly developed strategies for local
ground truthmonitoring. The data pipeline shall be used by the Austrian
avalanche warning services, and the presented concept for in-situ ground
truth data shall aid to establish comprehensive and inexpensive local
snowand avalanchemonitoring. A collection ofAustrian avalanchemaps
for 2014-today and analysis of the results with respect to, e.g., weather,
location, or snow type shall be publicly made available. The avalanche
warning system in Austria is currently based on experts’ experience,
observations and data. We want to provide automated and reliable
additional data to base their judgment upon.

Several skiing resorts use ground-based measurements that
make use of infrasonic, optical, lidar, and radar sensors. These
systems can detect avalanches well, in general, on a limited local
scale, but are very expensive (and therefore not well suited for up-
scaling) and have several limitations, e.g., infrasonic sensors show
unreliable detection for medium and small avalanches (less than
105 m2) and in more than 3 km distance from the sensors (Mayer
et al., 2020), ground-based radar systems can only detect avalanches
within their line of sight (Schimmel et al., 2017), to name a few.
Therefore, we will evaluate the potential of the satellite-based
avalanche detection pipeline and the automotive sensor-based
ground truth monitoring for applications in ski resorts together
with the respective ski resort operators.

We will investigate how the integrated data pipeline (based on
both satellite and automotive sensor data) can be exploited in the
best possible way for operational avalanche danger evaluation. We
will assess the potential of the developed data pipeline for avalanche
forecasting based on weather forecast and cross validation with
historic weather and avalanche data. This is the first approach that
tries to combine SAR together with ground truth and weather data
to help avalanche danger assessment in an automated manner.

In addition, we want to produce and publish the first dataset of
historic avalanches from 2014 onwards for the whole Austrian Alps.
This avalanche inventory shall be made publicly available to serve as
reference dataset for training and validation of forthcoming ML
approaches.

A milestone on the path to setting up an automated avalanche
detection and monitoring tool for Austria is the generation of an
avalanche outline dataset that may serve as initial validation
dataset for the algorithm. A further task is to improve the
detection rate regarding the resolution of the Sentinel-1 data,
since only larger avalanches are detected, in general. A possible
approach to improve the resolution may be LRW as proposed and
tested on avalanches by Small et al. (2022) and Tompkin and
Leinss (2021), respectively. A challenge that needs to be tackled is
the improvement of the visibility of dry snow avalanches in SAR
images. Furthermore, a multisensor approach taking into
account optical satellite data and ground truth measurements
can potentially complement the SAR detections.

7 Conclusion

Currently, there is no automated snow avalanche detection
tool in operational use in Austria. However, first approaches of
avalanche detection from SAR satellite images have been proven
more than successful and therefore deem promising tools for
Austria. Hence, we introduce here the first approaches to an
automated avalanche detection system and a roadmap for a
monitoring and forecasting tool for Austria. The Copernicus
Sentinel-1 mission provides free of charge and weather
independent access to satellite data that greatly facilitates our
propositions. A state of the art data pipeline together with a
suitable ML approach build the core of the detection algorithm.
Our approach will be complimented by ground truth
measurements with the novel MOLISENS platform.

The importance of weather parameters - together with
snowpack properties and terrain - are undisputable for the
release of avalanches. Therefore, our comprehensive approach of
the combination of satellite and weather data is promising for the
improvement of the detection results.

A major reason why an automated detection system has not yet
been set up for Austria is the lack of a complete and high quality
training and validation avalanche archive. Here, we present the
first steps to gather a comprehensive avalanche inventory for
Austria. In the future, our tool may help the Austrian avalanche
services as well as local avalanche commissions to improve the
avalanche risk assessment, avalanche documentation and
forecasting for Austria.

A future task may be to take into account deep learning
approaches from other areas, e.g., landslides show similar
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characteristics as snow avalanches, are bound to gravity and
topographical features. The detection of landslides from satellite
images has made impressive advances (e.g., Gudiyangada Nachappa
et al., 2019; Ghorbanzadeh et al., 2022), which may be applicable to
the detection of snow avalanches as well.
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