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Summary B. Hazard Module : Building meteorological scenarios. Valldatlon and ReSUItS
Severe convective storms are a common occurrence during spring and summer season in European The production of yearly hail scenarios requires physically consistent daily sequences of atmospheric drivers, on which hail will be afterward 4
. ) ) . . . simulated using the occurrence model. The occurrence model performance
countries. The damages caused by hail and wind gusts can be substantial to properties, especially on The production of atmospheric scenarios follows a two-step approach. First, a Kohonen map clustering is applied on historical data to classify days is evaluated over year 2.017' on a AXAFrancel hi
motor. The development of a convective storms hazard stochastic catalogue is an important step for AXAto  with similar weather profiles. Second, a Markov chain model is inferred on the cluster grid. Daily sequences are then produced by simulating temporafl a.nd geogra.phlcal basis. . ig::f:lrE:::ec::?;y robabilit Model aver
assess and mitigate this peril scenarios through the Markov chain. The validation analysis conducted P y odet average
) . ) . . The Kohonen map classifier is applied on historical days from April to September over the 2006-2022 period. To capture seasonality effects, the leads us to consider the calibrated "
We propose a method to build a catalogue of synthetic events based on multiple meteorological drivers . cteringis performed by month. GAM suitable for hail occurrence .
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from ECMWF-ERA5 and EUMETSAT-CMSAF. New atmospheric temporal sequences are created by The weather variables considered for clustering are CAPE and IWP. Unlike CAPE, IWP source is obtained through remote sensing and there might prgdlct|on. N . S istorical (claims)
reshuffling historical data. with constraints to keep physical consistency (identification of weather patterns be missing data over part of Europe on some days. To mitigate this issue, a combination of short-range and long-range inverse weighted U§|ng vulnerability curves calibrated
_ . o ’ S . , _ interpolations is applied to complete daily IWP. with AXA France claims on a dozen
and historical transition probabilities between them). The probability of hail occurrences is then assessed _ _ of large events (not shown),
for each meteorological configuration, learning from in-situ reports (ESWD and Keraunos), with historical i [2011-06-20 2006-06-13 : m,oﬁer']'.ed _'Oslses are CO”fo_’“ted
. . . . . . . . : with historical ones over an history
validation to gnsure accuracy of the ha!l prediction. A catalog of. pew plausible scenarios for conve.ctlve - Monthly clustering from April to September of 20 years. Modelled losses over
storm hazard is produced and crossed with exposure and vulnerability data to assess the subsequent risk. " From 2006102022 the different return periods are
= OnCAPE and IWP . . . .
consistent with historical ones.
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The formation of thunderstorms and the occurrence of hail within it is a complex process involving multiple parameters at small-scale level. A o’ "gz,w}m e o5 s;f‘"j ""‘i“};wfﬂw 16_18
moist layer and convective energy coupled with orographic lifting or wind shear are base ingredients for a thunderstorm. Presence of Q\ (e 1 Vi , Y gk 1.8-20
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condensation nuclei, updraft winds, high liquid water content and part of the cloud layer below freezing is required for hail to occur. 7 & d NN Z‘? /ﬁ, 5 5 | 4? /ﬁ, 5 Y 20-22
Unlike wind or rain, there is no atmospheric variable from weather models providing a precise assessment of hail presence and intensity, but some L 4 L ‘:}ﬁ | -}ve < i B ;
provide relevant hints on the hail potential for a given atmospheric configuration. Considering these variables and crossing it with in situ hail - | | - | | - | | 26_28
reports records, hail potential can be quantified Simulated day 1 Simulated day 2 Simulated day 3 58_30
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CAPE - Convective Climate classes C. Hazard Module : Simulation and spatialization. Next ste PS Hailstreak footprints analysis.
o t’“’:"i‘:le \ Following a scenario of daily atmospheric sequence generated with the scenarisation submodule methodology, hail occurrences are simulated = HDBSCAN clustering, regression lines
otentialEnerey _ — from the probabilities obtained using the GAM defined in the first submodule, a daily sequence of hail occurrenceis therefore produced. Several elements of the model can be refined to further improve |* Width, length and main axis orientation analysis
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m — The refinement of spatialization is also explored to obtain
CIN- C ; — DLS For each occurrence point, a maximum hail size is sampled footprints in shapes closer to observed hailstreaks, using both
I;1h?bni¥iicn ve from empirical distributions based on in-situ reports data, given  statistical clustering approach on reports, literature results and a
\ cape intensity level. sample of radar data.
2 ECMWF GAM R{SFdiCtm“ 2014-06-23 Spatialization is afterward carried out around each occurrence  Finally, a project is underway to conduct sensitivities and define
i _ point starting from the maximum hail size and following a strong validation elements for the scenarisation part.
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